
DATABASE SYSTEMS

[R22A0553]

LECTURE NOTES

B.TECH

III YEAR–II SEM

(R22)
ACADEMIC YEAR (2024-25)

DEPARTMENT OF EEE

MALLA REDDY COLLEGE OF ENGINEERING&TECHNOLOGY

(Autonomous Institution–UGC, Govt. of India)
Recognized under 2(f) and 12(B) of UGC ACT 1956

(Affiliated to JNTUH, Hyderabad, Approved by AICTE-Accredited by NBA&NAAC– ‘A’ Grade-ISO9001:2015Certified)

Maisammaguda, Dhulapally (PostVia.Hakimpet), Secunderabad- 500100,Telangana.

DIGITAL NOTES ON

DATABASE SYSTEMS (R22A0553)

B.TECH III YEAR-II SEM (2024-25)

PREPARED BY

G NARESH

B.Tech (Electrical & Electronics Engineering) R-22

Malla Reddy College of Engineering and Technology(MRCET)

MALLAREDDYCOLLEGEOFENGINEERINGANDTECHNOLOGY
III Year B.Tech.EEE- IISem L/T/P/C

3/-/-/3
 OPEN ELECTIVE - II (R22A0553)

DATABASE SYSTES

COURSE OBJECTIVES:

To understand the basic concepts and the applications of database systems

1) To Master the basics of SQL and construct queries using SQL
2) To understand the relational database design principles
3) To become familiar with the basic issues of transaction processing and concurrency control
4) To become familiar with database storage structures and access techniques

UNITI:
INTRODUCTION
Database:PurposeofDatabaseSystems,FileProcessingSystemVsDBMS,History,Characteristic-
Three schema Architecture of a database, Functional components of a DBMS.DBMS Languages-
Database users and DBA.

UNITII:
DATABASEDESIGN
ER Model: Objects, Attributes and its Type. Entity set and Relationship set-Design Issues of ER
model-Constraints. Keys-primary key, Super key, candidate keys. Introduction to relational
model-Tabular, Representation of Various ER Schemas. ER Diagram Notations- Goals of ER
Diagram- Weak Entity Set- Views.

UNITIII:
STRUCTUREDQUERY LANGUAGE
SQL: Overview, The Form of Basic SQL Query -UNION, INTERSECT, and EXCEPT– join operations:
equi join and non equi join-Nested queries - correlated and uncorrelated- Aggregate Functions-
Null values.Views, Triggers.

UNITIV:
DEPENDENCIESANDNORMALFORMS
Importance of a good schema design,:- Problems encountered with bad schema designs,
Motivation for normal forms- functional dependencies, -Armstrong's axioms for FD's- Closure of
a set of FD's,- Minimal covers-Definitions of 1NF,2NF, 3NF and BCNF- Decompositions and
desirable properties.

UNITV:
Transactions: Transaction concept, transaction state, System log, Commit point, Desirable
PropertiesofaTransaction,concurrentexecutions,serializability,recoverability,implementation of
isolation, transaction definition in SQL, Testing for serializability, Serializability by Locks- Locking
Systems with Several Lock Modes- Concurrency Control by Timestamps, validation.

B.Tech (Electrical & Electronics Engineering) R-22

Malla Reddy College of Engineering and Technology(MRCET)

TEXTBOOKS:
1) AbrahamSilberschatz,HenryF.Korth,S.Sudarshan,‖DatabaseSystem

Concepts‖,McGraw-Hill,6thEdition,2010.
2) FundamentalofDatabaseSystems,byElmasri,Navathe,Somayajulu,andGupta,

Pearson Education.

REFERENCE BOOKS:
1) RaghuRamakrishnan,JohannesGehrke,―DatabaseManagementSystem‖,McGrawHill., 3rd

Edition 2007.
2) Elmasri&Navathe,‖FundamentalsofDatabaseSystem,‖Addison-WesleyPublishing,5th

Edition, 2008.
3) Date.C.J,―AnIntroductiontoDatabase‖,Addison-WesleyPubCo,8thEdition,2006.
4) Peterrob,Carlos Coronel, ―Database Systems – Design, Implementation, and

Management‖,9thEdition,ThomsonLearning,2009.

COURSEOUTCOMES:

1) Understand the basic concepts and the applications of data base systems
2) Master the basics of SQL and construct queries using SQL
3) Understand the relational data base design principles
4) Familiarize with the basic issues of transaction processing and concurrency control
5) Familiarize with database storage structures and access techniques

DATABASE SYSTEMS

1

Data:

Itisacollectionof information.

UNIT I

INTRODUCTION

DATABASE

Thefactsthatcanberecordedandwhichhaveimplicitmeaningknownas'data'.

Example:

Customer-----

1.cname.

2. cno.

3. ccity.

Database:

 Itisacollectionofinterrelateddata.

 Thesecanbestoredintheformoftables.

 Adatabasecanbeofanysizeandvaryingcomplexity.

 Adatabasemaybegeneratedandmanipulatedmanuallyoritmaybecomputerized.

Example:

Customerdatabaseconsiststhefieldsascname,cno,and ccity

DatabaseSystem:

It is computerized system, whose overall purpose is to maintain the information and to make that the

information is available on demand.

Advantages:

1.Redundency can be reduced

2.Inconsistencycanbeavoided.

3.Datacan be shared

4.Standardscanbeenforced.

5.Securityrestrictionscanbeapplied. 6.Integrity

can be maintained.

7.Datagatheringcanbepossible.

8.Requirementscanbebalanced.

DATABASE SYSTEMS

2

Figure:EmployeesareaccessingDatathrough DBMS

For example, within a company there are different departments, as well as customers, who

each need to see different kinds of data. Each employee in the company will have different

levels of access to the database with their own customized front-end application.

In a database, data is organized strictly in row and column format. The rows are called Tuple

or Record. The data items within one row may belong to different data types. On the other

hand, the columns are often called Domain or Attribute. All the data items within a single

attribute are of the same data type.

WhatisManagement System?

A database-management system (DBMS) is a collection of interrelated data and a set of

programs to access those data. This is a collection of related data with an implicit meaning

and hence is a database.

The collection of data, usually referred to as the database, contains information relevant toan

enterprise. The primary goal of a DBMS is to provide a way to store and retrieve database

information that is both convenient and efficient. By data, we mean known facts that can be

recorded and that have implicit meaning.

Database systems are designed to manage large bodies of information. Management of data

involves both defining structures for storage of information and providing mechanisms forthe

manipulation of information. In addition, the database system must ensure the safety of the

information stored, despite system crashes or attempts at unauthorized access. If data are to

be shared among several users, the system must avoid possible anomalous results.

DATABASE SYSTEMS

3

DatabaseManagementSystem(DBMS):

It is a collection of programs that enables user to create and maintain a database. In other words it is

general-purpose software that provides the users with the processes of defining, constructing and

manipulating the database for various applications.

Databases touch all aspects of our lives. Some of the major areas of application are

asfollows:

1. Banking

2. Airlines

3. Universities

4. Manufacturingand selling

5. Humanresources

EnterpriseInformation

◦ Sales:Forcustomer,product,andpurchase information.

◦ Accounting:Forpayments,receipts,accountbalances,assetsandotheraccounting information.

◦ Human resources: For information about employees, salaries, payroll taxes, and

benefits,and for generation of pay checks.

◦ Manufacturing:Formanagementofthesupplychainandfortrackingproductionofitemsin

factories, inventories of items in warehouses and stores, and orders for items.

Onlineretailers:Forsalesdatanotedaboveplusonlineordertracking,generationof recommendation

lists, and maintenance of online product evaluations.

◦ Banking:Forcustomerinformation,accounts,loans,andbankingtransactions.

◦ Credit card transactions: For purchases on credit cards and generation of monthly

statements.

◦ Finance: For storing information about holdings, sales, and purchases of financial

instruments such as stocks and bonds; also for storing real-time market data to enable online

trading by customers and automated trading by the firm.

Universities: For student information, course registrations, and grades (in addition tostandard

enterprise information such as human resources and accounting).

Airlines: For reservations and schedule information. Airlines were among the first to use

databases in a geographically distributed manner.

DATABASE SYSTEMS

4

Telecommunication: For keeping records of calls made, generating monthly bills,

maintaining balances on prepaid calling cards, and storing information about the

communication networks.

PurposeofDatabaseSystems

Database systems arose in response to early methods of computerized management of

commercial data. As an example of such methods, typical of the 1960s, consider part of a

university organization that, among other data, keeps information about all instructors,

students, departments, and course offerings. One way to keep the information on a computer

is to store it in operating system files. To allow users to manipulate the information, the

system has a number of application programs that manipulate the files, including programsto:

Addnewstudents,instructors,andcourses

Registerstudentsforcoursesandgenerateclass rosters

Assigngradestostudents,computegradepointaverages (GPA),andgeneratetranscripts

This typical file-processing system is supported by a conventional operating system. The

system stores permanent records in various files, and it needs different application programs

to extract records from, and add records to, the appropriate files. Before databasemanagement

systems (DBMSs) were introduced, organizations usually stored information in such systems.

Keeping organizational information in a file-processing system has a number of major

disadvantages:

Data redundancy and inconsistency: Since different programmers create the files and

application programs over a long period, the various files are likely to have different

structuresandtheprograms maybewritteninseveralprogramminglanguages.Moreover,the same

information may be duplicated in several places (files). For example, if a student has a double

major (say, music and mathematics) the address and telephone number of that student may

appear in a file that consists of student records of students in the Music department and in a

file that consists of student records of students in the Mathematics department. This

redundancy leads to higher storage and access cost. In addition, it may lead to data

inconsistency; that is, the various copies of the same data may no longer agree.

Forexample,achangedstudentaddressmaybereflectedintheMusicdepartmentrecordsbut not

elsewhere in the system.

DATABASE SYSTEMS

5

Difficulty in accessing data: Suppose that one of the university clerks needs to find out the

names of all students who live within a particular postal-code area. The clerk asks the data-

processing department to generate such a list. Because the designers of the original systemdid

not anticipate this request, there is no application program on hand to meet it. There is,

however, an application program to generate the list of all students.

Data isolation: Because data are scattered in various files, and files may be in different

formats, writing new application programs to retrieve the appropriate data is difficult.

Integrity problems: The data values stored in the database must satisfy certain types of

consistency

constraints: Suppose the university maintains an account for each department, and records

thebalanceamountineachaccount.Supposealsothattheuniversityrequiresthattheaccount balance

of a department may never fall below zero. Developers enforce these constraints in the

system by adding appropriate code in the various application programs. However, when

newconstraintsareadded,itis difficulttochangetheprogramstoenforce them.Theproblem is

compounded when constraints involve several data items from different files.

Atomicityproblems:Acomputersystem,likeanyotherdevice,issubjecttofailure. Inmany

applications, it is crucial that, if a failure occurs, the data be restored to the consistent state

that existed prior to the failure.

Concurrent-access anomalies. For the sake of overall performance of the system and faster

response, many systems allow multiple users to update the data simultaneously. Indeed,

today, the largest Internet retailers may have millions of accesses per day to their data by

shoppers. In such an environment, interaction of concurrent updates is possible and

mayresultininconsistentdata.ConsiderdepartmentA,withanaccountbalance of$10,000.Iftwo

department clerks debit the account balance (by say $500 and $100, respectively) of

department A at almost exactly the same time, the result of the concurrent executions may

leave the budget in an incorrect (or inconsistent) state.

Suppose that the programs executing on behalf of each withdrawal read the old balance,

reduce that value by the amount being withdrawn, and write the result back. If the two

programsrunconcurrently,theymaybothreadthevalue$10,000,andwriteback$9500and

$9900, respectively. Depending on which one writes the value last, the account balance of

department A may contain either $9500 or $9900, rather than the correct value of $9400. To

guard against this possibility, the system must maintain some form of supervision. But

supervision is difficult to provide because data may be accessed by many differentapplication

programs that have not been coordinated previously.

DATABASE SYSTEMS

6

Security problems. Not every user of the database system should be able to access all the

data. For example, in a university, payroll personnel need to see only that part of the database

that has financial information. They do not need access to information about academic

records. But, since application programs are added to the file-processing system in an ad hoc

manner, enforcing such security constraints is difficult. These difficulties, among others,

prompted the development of database systems. In what follows, we shall see the concepts

and algorithms that enable database systems to solve the problems with file processing

systems.

Advantagesof DBMS:

Controlling of Redundancy: Data redundancy refers to the duplication of data (i.e storing

same data multiple times). In a database system, by having a centralized database and

centralized control of data by the DBA the unnecessary duplication of data is avoided. It also

eliminates the extra time for processing the large volume of data. It results in saving the

storage space.

Improved Data Sharing : DBMS allows a user to share the data in any number of

application programs.

Data Integrity : Integrity means that the data in the database is accurate. Centralized control

of the data helps in permitting the administrator to define integrity constraints to the data in

the database. For example: in customer database we can can enforce an integrity that it must

accept the customer only from Noida and Meerut city.

Security : Having complete authority over the operational data, enables the DBA in ensuring

that the only mean of access to the database is through proper channels. The DBA can define

authorization checks to be carried out whenever access to sensitive data is attempted.

Data Consistency : By eliminating data redundancy, we greatly reduce the opportunities for

inconsistency.Forexample:isacustomeraddressisstoredonlyonce,wecannothave disagreement

on the stored values. Also updating data values is greatly simplified when each

valueisstoredinoneplaceonly.Finally,weavoidthewastedstoragethatresultsfrom redundant data

storage.

EfficientDataAccess:Inadatabasesystem,thedataismanagedbytheDBMSandall access to the

data is through the DBMS providing a key to effective data processing Enforcements of

Standards : With the centralized of data, DBA can establish and enforcethe data standards

which may include the naming conventions, data quality standards etc.

DATABASE SYSTEMS

7

Data Independence : Ina database system, the database management system provides the

interface

between the application programs and the data. When changes are made to the data

representation,themetadataobtainedbytheDBMSischangedbuttheDBMSiscontinuesto provide

the data to application program in the previously used way. The DBMs handles the task of

transformation of data wherever necessary.

Reduced Application Development and Maintenance Time : DBMS supports many

important functions that are common to many applications, accessing data stored in the

DBMS, which facilitates the quick development of application

DisadvantagesofDBMS

 It is bit complex. Since it supports multiple functionality to give the user the best, the

underlying software has become complex. The designers and developers should have

thorough knowledge about the software to get the most out of it.

 Because of its complexity and functionality, it uses large amount of memory. It also

needs large memory to run efficiently.

 DBMS system works on the centralized system, i.e.; all the users from all over the

world access

 thisdatabase.Hence anyfailureoftheDBMS,will impactalltheusers.

 DBMS is generalized software, i.e.; it is written work on the entire systems rather

specific one. Hence some of the application will run slow.

Peoplewhodealwithdatabases

Many persons are involved in the design, use and maintenance of any database. These persons can be

classified into 2 types as below.

Actorsonthescene:

The people, whose jobs involve the day-to-day use of a database are called as 'Actors on the scene',

listed as below.

1. DatabaseAdministrators(DBA):

The DBA is responsible for authorizing access to the database, forCoordinating and monitoring its

useandforacquiringsoftwareandhardwareresourcesasneeded.Thesearethepeople,whomaintain and

design the database daily.DBA is responsible for the following issues.

DATABASE SYSTEMS

8

 Designoftheconceptualandphysicalschemas:

The DBA is responsible for interacting with the users of the system to understand what datais

to be stored in the DBMS and how it is likely to be used. The DBA creates the original

schema by writing a set of definitions and isPermanently stored in the 'Data Dictionary'.

 Securityand Authorization:

The DBA is responsible for ensuring the unauthorized data access is not permitted.The

granting of different types of authorization allows the DBA to regulate which parts of the

database various users can access.

 StoragestructureandAccessmethoddefinition:

The DBA creates appropriate storage structures and access methodsby writing a set of

definitions, which are translated by the DDL compiler.

 Data Availability and Recovery from Failures: The DBA must take steps to ensure that if

thesystemfails,userscancontinuetoaccessasmuchoftheuncorrupteddataaspossible.The DBA

also work to restore the data to consistent state.

 Database Tuning:

The DBA is responsible for modifying the database to ensure adequatePerformance as

requirementschange.Integrity Constraint Specification:The integrity constraints are kept in a

special system structure that is consulted by the DBA whenever an update takes place in the

system.

2. DatabaseDesigners:

Databasedesignersareresponsibleforidentifyingthedatatobestoredinthedatabaseandfor choosing appropriate

structures to represent and store this data.

3. End Users:

Peoplewhowishtostoreandusedatainadatabase.

Endusersarethepeoplewhosejobsrequireaccesstothedatabaseforquerying,updatingand generating reports,

listed as below.

 CasualEnd users:

These people occasionally access the database, but they may need different information each

time.

 NaiveorParametricEndUsers:

Theirjobfunctionrevolvesaroundconstantlyqueryingandupdatingthedatabaseusing standard

types of queries and updates.

 SophisticatedEndUsers:

TheseincludeEngineers,Scientists,Businessanalystandothersfamiliarizetoimplement their

applications to meet their complex requirements.

 StandaloneEndusers:

DATABASE SYSTEMS

9

Thesepeoplemaintainpersonaldatabasesbyusingready-madeprogrampackagesthatprovide easy

to use menu based interfaces.

4. SystemAnalyst:

Thesepeopledeterminetherequirementsofendusersanddevelopspecificationsfortransactions.

5. ApplicationProgrammers(Software Engineers):

Thesepeoplecantest,debug,documentandmaintainthespecifiedtransactions.

b.Workersbehindthe scene:

DatabaseDesignersandImplementers:

ThesepeoplewhodesignandimplementtheDBMSmodulesandinterfacesasasoftware package.

2. Tool Developers:

Includepersonswhodesignandimplementtoolsconsistingthepackagesfordesign,performance monitoring, and

prototyping and test data generation.

3. Operatorsandmaintenancepersonnel:

Theserethesystemadministrationpersonnelwhoareresponsiblefortheactualrunningand maintenance of the

hardware and software environment for the database system.

LEVELSOFDATAABSTRACTION

Thisisalsocalledas'TheThree-SchemaArchitecture’,whichcanbeusedtoseparatetheuser applications and the

physical database.

Figure:LevelsofAbstractioninaDBMS

DATABASE SYSTEMS

10

1. PhysicalLevel:(orInternalView/Schema):

The lowest level of abstraction describes how the data are actually stored. The physical level

describes complex low-level data structures in detail..

Example:

Customeraccountdatabasecanbedescribed.

2. LogicalLevel:(orConceptualView/Schema):

Thenext-higherlevelof abstractiondescribeswhat

data are stored in the database, and what relationships exist among those data. The logical

level thus describes the entire database in terms of a small number of relatively simple

structures. Although implementation of the simple structures at the logical level may involve

complex physical-level structures, the user of the logical level does not need to be aware of

this complexity. This is referred to as physical data independence.

Example:

Each record

typecustomer=record

cust_name: sting;

cust_city: string;

cust_street: string;end;

3. ConceptualLevel:(orExternalView/ Schema):

The highest level of abstraction describes only part of the entire database. Even though the

logical level uses simpler structures, complexity remains because of the variety ofinformation

stored in a largedatabase. Many users of the database system do not need all this information;

instead, they need to access only a part of the database. The view level of abstraction exists to

simplifytheirinteraction with thesystem. Thesystem mayprovidemany views for the same

database.

Example:

Forexample,wemay describearecordas follows:

typeinstructor =record

ID: char(5);

name: char(20);

dept name : char (20);

salary:numeric(8,2);

end;

DATABASE SYSTEMS

11

Thiscodedefinesanewrecordtypecalledinstructorwithfourfields.Eachfieldhasaname and a

type associated with it. A university organization may have several such record types,

including

• department,withfieldsdept_name,building,andbudget

• course,withfields course_id,title, dept_name,and credits

• student,withfieldsID,name,dept_name,andtot_cred

At the physical level, an instructor, department, or student record can be described as a block

of consecutive storage locations. At the logical level, each such record is described by a type

definition, as in the previous code segment, and the interrelationship of these record types is

defined as well. Finally, at the view level, computer users see a set of application programs

that hide details of the data types. At the view level, several views of the database aredefined,

and a database user sees some or all of these views.

DATABASE SYSTEMS

12

Data Models

UNIT II

DATABASEDESIGN

ERModel

Underlyingthestructureofadatabaseisthedatamodel:acollectionofconceptualtoolsfor

describing data, data relationships, data semantics, and consistency constraints.

Thedata modelscan be classified intofour different categories:

 Relational Model. The relational model uses a collection of tables to represent both

data and the relationships among those data. Each table has multiple columns, and

each column has a unique name. Tables are also known as relations. The relational

model is an example of a record-based model.

 Entity-Relationship Model. The entity-relationship (E-R) data model uses a

collection of basic objects, called entities, and relationships among these objects.

Suppose that each department has offices in several locations and we want to record

the locations at which each employee works. The ER diagram for this variant of

Works In, which we call Works In2

Example-ternary

DATABASE SYSTEMS

13

ERModel -(RailwayBookingSystem)

ERModel-(BankingTransactionSystem)

Object-Based Data Model.

Object-oriented programming (especially in Java, C++, or C#) has become the dominant

software-development methodology. This led to the development of an object oriented data

model that can be seen as extending the E-R model with notions of encapsulation methods

(functions), and object identity.

Semi-structuredDataModel.

The semi-structured data model permits the specification of data where individual data items

of the same type may have different sets of attributes. This is in contrast to the data models

mentioned earlier, where every data item of a particular type must have the same set of

attributes. The Extensible Markup Language (XML) is widely used to represent semi

structured data.

Historically, the network data model and the hierarchical data model preceded the

relational data model.

These models were tied closely to the underlying implementation, and complicated the taskof

modelling data.

DATABASE SYSTEMS

14

As a result they are used little now, except in old database code that is still in service in some

places.

DatabaseLanguages

Adatabasesystem provides a data-definition language to specifythedatabase schemaand a

data-manipulation language to express database queries and updates. In practice, the data

definition and data-manipulation languages are not two separate languages; instead they

simply form parts of a single database language, such as the widely used SQL language.

Data-ManipulationLanguage

Adata-manipulationlanguage(DML)isalanguagethatenablesuserstoaccessor manipulate data as

organized by the appropriate data model. The types of access are:

• Retrievalofinformationstoredinthedatabase

• Insertionofnewinformationintothe database

• Deletionofinformationfromthedatabase

• Modificationofinformationstoredinthedatabase

There are basically two types:

• ProceduralDMLsrequireauserto specifywhatdataareneeded and how to get thosedata.

• DeclarativeDMLs(alsoreferredtoasnonproceduralDMLs)requireausertospecify

whatdataareneededwithoutspecifying howto get thosedata.

A query is a statement requesting the retrieval of information. The portion of a DML that

involves information retrieval is called a query language. Although technically incorrect, itis

common practice to use the terms query language and data-manipulation language

synonymously.

Data-DefinitionLanguage(DDL)

Wespecifyadatabaseschemaby aset ofdefinitions expressedby aspecial language called a data

definition language (DDL). The DDL is also used to specify additional properties of the

data.

• Domain Constraints. A domain of possible values must be associated with every attribute

(for example, integertypes, charactertypes, date/timetypes). Declaring an attributeto beofa

particular domain acts as a constraint on the values that it can take. Domain constraints arethe

most elementary form of integrity constraint. They are tested easily by the system whenever a

new data item is entered into the database.

DATABASE SYSTEMS

15

• Referential Integrity. There are cases where we wish to ensure that a value that appears in

one relation for a given set of attributes also appears in a certain set of attributes in another

relation(referentialintegrity).Forexample,thedepartmentlisted foreachcoursemustbeone

thatactually exists.Moreprecisely,thedeptname valuein acourserecordmustappearinthe dept

name attribute of some record of the department relation.

• Assertions. An assertion is any condition that the database must always satisfy. Domain

constraints and referential-integrity constraints are special forms of assertions. However,there

are many constraints that we cannot express by using only these special forms. For example,

“Every department must have at least five courses offered every semester” must be expressed

as an assertion..

• Authorization. We may want to differentiate among the users as far as the type of access

theyarepermittedonvariousdatavaluesinthedatabase.Thesedifferentiationsareexpressed in

terms of authorization, the most common being: read authorization, which allows reading,

but not modification, of data; insert authorization, which allows insertion of new data, but

not modification of existing data; update authorization, which allowsmodification, but not

deletion, of data; and delete authorization, which allows deletion of data. We may assign the

user all, none, or a combination of these types of authorization. The DDL, just like any other

programming language, gets as input some instructions (statements) and generates some

output. The output of the DDL is placed in the data dictionary,which contains metadata—

that is, data about data.

Data Dictionary

We can define a data dictionary as a DBMS component that stores the definition of data

characteristics and relationships. You may recall that such “data about data” were labelled

metadata. The DBMS data dictionary provides the DBMS with its self describing

characteristic. In effect, the data dictionary resembles and X-ray of the company’s entire data

set, and is a crucial element in the data administration function.

Forexample,thedatadictionarytypicallystoresdescriptionsof all:

• Data elements that are define in all tables of all databases. Specifically the data dictionary

stores the name, data types, display formats, internal storage formats, and validation rules.

The data dictionary tells where an element is used, by whom it is used and so on.

• Tablesdefineinalldatabases.Forexample,the datadictionaryislikelytostore thenameof the

table creator, the date of creation access authorizations, the number of columns, and soon.

DATABASE SYSTEMS

16

• Indexes define for each database tables. For each index the DBMS stores at least the index

name the attributes used, the location, specific index characteristics and the creation date.

• Definedatabases:whocreatedeachdatabase,thedateofcreationwherethedatabaseis located,

who the DBA is and so on.

• EndusersandTheAdministratorsofthedatabase

• Programsthataccessthedatabaseincludingscreenformats,reportformatsapplication formats,

SQL queries and so on.

• Access authorizationforallusersofalldatabases.

• Relationships among data elements which elements are involved: whether the relationship

are mandatory or optional, the connectivity and cardinality and so on.

DatabaseAdministratorsandDatabaseUsers

A primary goal of a database system is to retrieve information from and store new

information in the database.

DatabaseUsersandUser Interfaces

There are four different types of database-system users, differentiated by the way they expect

to interact with the system. Different types of user interfaces have been designed for the

different types of users.

Naive users are unsophisticated users who interact with the system by invoking one of the

applicationprogramsthathavebeenwrittenpreviously.Forexample,abanktellerwhoneeds to

transfer $50 from account A to account B invokes a program called transfer.

Application programmers are computer professionals who write application programs.

Application programmers can choose from many tools to develop user interfaces. Rapid

application development (RAD) tools are tools that enable an application programmer to

construct forms and reports without writing a program.

Sophisticated users interact with the system without writing programs. Instead, they form

their requests in a database query language. They submit each such query to a query

processor, whosefunction is to break down DML statements into instructions that the storage

manager understands. Analysts who submit queries to explore data in the databasefall in this

category.

Online analytical processing (OLAP) tools simplify analysts’ tasks by letting them view

summariesofdataindifferentways. Forinstance, ananalyst canseetotalsalesbyregion(for

example, North, South, East, and West), or by product, or by a combination of region and

product (that is, total sales of each product in each region).

DATABASE SYSTEMS

17

DatabaseArchitecture:

The architecture of a database system is greatly influenced by the underlying computersystem

on which the database system runs. Database systems can be centralized, or client- server,

where one server machine executes work on behalf of multiple client machines. Database

systems can also be designed to exploit parallel computer architectures. Distributed databases

span multiple geographically separated machines.

Figure:DatabaseSystem Architecture

Adatabasesystemispartitionedinto modulesthatdealwitheachoftheresponsibilitiesofthe overall

system. The functional components of a database system can be broadly divided into the

storage manager and the query processor components. The storage manager is important

because databases typically require a large amount of storage space. The query processor is

important because it helps the database system simplify and facilitate access to data.

DATABASE SYSTEMS

18

Figure:Two-tierandthree-tier architectures.

QueryProcessor:

Thequeryprocessor components include

· DDLinterpreter, whichinterpretsDDLstatementsandrecordsthedefinitionsinthedata

dictionary.

· DML compiler, which translates DML statements in a query language into an evaluation

plan consisting of low-level instructions that the query evaluation engine understands. A

query can usually be translated into any of a number of alternative evaluation plans that all

give the same result. The DML compiler also performs query optimization, that is, it picks

the lowest cost evaluation plan from among the alternatives. Query evaluation engine,which

executes low-level instructions generated by the DML compiler.

StorageManager:

A storage manager is a program module that provides the interface between the low level

data stored in the database and the application programs and queries submitted to the system.

The storage manager is responsible for the interaction with the file manager. The storage

manager components include:

 Authorization and integrity manager, which tests for the satisfaction of integrity

constraints and checks the authority of users to access data.

DATABASE SYSTEMS

19

 Transaction manager, which ensures that the database remains in a consistent

(correct) state despite system failures, and that concurrent transaction executions

proceed without conflicting.

 File manager, which manages the allocation of space on disk storage and the data

structures used to represent information stored on disk.

 Buffer manager, which is responsible for fetching data from disk storage into main

memory, and deciding what data to cache in main memory. The buffer manager is a

critical part of the database system, since it enables the database to handle data sizes

that are much larger than the size of main memory.

Transaction Manager:

A transaction is a collection of operations that performs a single logical function in a

database application. Each transaction is a unit of both atomicity and consistency. Thus, we

require that transactions do not violate any database-consistency constraints.

ConceptualDatabaseDesign-EntityRelationship(ER)Modeling:

Database Design Techniques

1. ERModeling (Topdown Approach)

2. Normalization(BottomUpapproach)

What is ER Modeling?

Agraphicaltechniqueforunderstandingandorganizingthedataindependentoftheactual database

implementation

Weneedtobe familiar withthefollowing termstogo further.

Entity

Anythingthathasanindependentexistenceandaboutwhichwecollectdata.Itisalso known as entity

type. In ER modeling, notation for entity is given below.

Entityinstance

Entityinstanceisaparticularmemberoftheentitytype. Example

for entity instance : A particular employee

DATABASE SYSTEMS

20

Regular Entity

Anentitywhichhasitsownkeyattributeisaregularentity.

Example for regular entity : Employee.

Weakentity

Anentitywhichdependsonotherentityforitsexistenceanddoesn'thaveanykeyattributeof its own

is a weak entity.

Example for a weak entity : In a parent/child relationship, a parent is considered as a

strongentity and the child is a weak entity.

InERmodeling,notationforweakentityisgiven below.

Attributes

Properties/characteristicswhichdescribeentitiesarecalledattributes. In

ER modeling, notation for attribute is given below

 DomainofAttributes

The set of possible values that an attribute can take is called the domain of the

attribute.

For example, the attribute day may take any value from the set {Monday, Tuesday ...

Friday}. Hence this set canbe termed as the domain of the attribute day.

 Key attribute

The attribute (or combination of attributes) which is unique for every entity instanceis

called key attribute.

E.g the employee_id of an employee, pan_card_number of a person etc.If the key

attributeconsistsoftwoormoreattributesincombination,itiscalledacompositekey. In ER

modeling, notation for key attribute is given below.

DATABASE SYSTEMS

21

 Simple attribute

Ifanattributecannotbedividedintosimplercomponents,itisasimpleattribute. Example for

simple attribute : employee_id of an employee.

 Compositeattribute

Ifanattribute canbesplitintocomponents,it iscalledacompositeattribute.

Exampleforcompositeattribute:Nameoftheemployeewhichcanbesplitinto First_name,

Middle_name, and Last_name.

 Single valued Attributes

Ifan attributecan takeonlyasinglevalueforeachentityinstance, itisasinglevalued

attribute.

example for single valued attribute : age of a student. It can take only one value for a

particular student.

 Multi-valued Attributes

Ifanattributecantakemorethanonevalueforeachentityinstance,itisamulti- valued

attribute.

exampleformultivaluedattribute:telephonenumberofanemployee,aparticular employee

may have multiple telephone numbers.

InERmodeling,notationformulti-valuedattributeisgivenbelow.

 StoredAttribute

Anattributewhichneedtobestoredpermanentlyisastoredattribute Example for

stored attribute : name of a student

 DerivedAttribute

An attribute which can be calculated or derived based on other attributes is a derived

attribute.

DATABASE SYSTEMS

22

Example for derived attribute : age of employee which can be calculated from date of

birth and current date.

InERmodelling,notationforderivedattributeisgiven below.

Relationships

Associationsbetween entitiesarecalledrelationships

Example:Anemployeeworksforanorganization.Here"worksfor"isarelationbetweenthe entities

employee and organization.

InERmodeling,notation forrelationshipisgivenbelow.

HoweverinERModeling,ToconnectaweakEntitywithothers,youshoulduseaweak relationship

notation as given below

DegreeofaRelationship

Degree of a relationship is the number of entity types involved. The n-ary relationship is the

general form for degree n. Special cases are unary, binary, and ternary ,where the degree is 1,

2, and 3, respectively.

Exampleforunaryrelationship:Anemployeeiaamanagerofanother employee Example

for binary relationship : An employee works-for department.

Exampleforternaryrelationship:customerpurchaseitem fromashopkeeper Cardinalityof a

Relationship Relationship cardinalities specify how many of each entity type is allowed.

DATABASE SYSTEMS

23

Relationshipscanhavefourpossibleconnectivitiesasgivenbelow.

1. Oneto one(1:1)relationship

2. Oneto many(1:N)relationship

3. Manytoone(M:1) relationship

4. Manyto many(M:N) relationship

Theminimumandmaximumvaluesofthisconnectivityiscalledthecardinalityofthe relationship

ExampleforCardinality –One-to-One(1:1)

Employeeisassigned withaparking space.

Oneemployeeisassignedwithonlyoneparkingspaceandoneparkingspaceisassignedto only one

employee. Hence it is a 1:1 relationship and cardinality is One-To-One (1:1)

InERmodeling,thiscanbementionedusingnotationsasgiven below

DATABASE SYSTEMS

24

ExampleforCardinality –One-to-Many(1:N)

Organizationhasemployees

Oneorganizationcanhavemanyemployees,butoneemployeeworksinonlyone organization.

Hence it is a 1:N relationship and cardinality is One-To-Many

(1:N)InERmodeling,thiscanbementionedusingnotationsasgivenbelow

ExampleforCardinality –Many-to-One(M:1)

Itis the reverseof theOneto Many relationship.employeeworks in organization

OneemployeeworksinonlyoneorganizationButoneorganizationcanhavemany employees.

DATABASE SYSTEMS

25

Hence it is a M:1 relationship and cardinality is Many-to-One (M

:1)InERmodeling,thiscanbementionedusingnotationsasgivenbelow.

Cardinality–Many-to-Many (M:N)

Studentsenrolls forcourses

One student canenroll for many coursesand one course can be enrolledby many

students.Hence it is a M:N relationship and cardinality is Many-to-Many (M:N)

InERmodeling,this canbementionedusingnotationsasgiven below

RelationshipParticipation

1. Total

Intotalparticipation,everyentityinstancewillbeconnectedthroughtherelationshipto another

instance of the other participating entity types

DATABASE SYSTEMS

26

2. Partial

Example for relationship participation Consider the relationship - Employee is head of the

department. Here all employees will not be the head of the department. Only one employee

will be the head of the department. In other words, only few instances of employee entity

participate in the above relationship. So employee entity's participation is partial in the said

relationship.

AdvantagesandDisadvantagesofERModeling(MeritsandDemeritsofERModeling) Advantages

1. ERModelingissimpleandeasilyunderstandable.Itisrepresentedinbusinessusers language and

it can be understood by non-technical specialist.

2. IntuitiveandhelpsinPhysicalDatabase creation.

3. Canbegeneralizedandspecializedbasedonneeds.

4. Canhelpindatabase design.

5. Givesahigherlevel description of the system.

Disadvantages

1. PhysicaldesignderivedfromE-RModelmayhavesomeamountofambiguitiesorinconsistency.

2. Sometimediagramsmayleadtomisinterpretations

Relational Model

The relational model is today the primary data model for commercial data processing

applications. It attained its primary position because of its simplicity, which eases the job of

the programmer,compared to earlier data models such as the network model or the

hierarchical model.

StructureofRelational Databases:

A relational database consists of a collection of tables, each of which is assigned a unique

name.

For example, consider the instructor table of Figure:1.5, which stores information about

instructors.Thetablehas fourcolumnheaders: ID,name,deptname,andsalary.Eachrowof this

table records information about an instructor, consisting of the instructor’s ID, name,dept

name, and salary.

DATABASE SYSTEMS

27

DatabaseSchema

When we talk about a database, we must differentiate between the database schema, whichis

the logical design of the database, and the database instance, which is a snapshot of the data

in the database at a given instant in time. The concept of a relation corresponds to the

programming language notion of a variable, while the concept of a relation schema

corresponds to the programming-language notion of type definition.

Keys

Akeyconstraintisastatementthatacertainminimalsubsetofthefieldsofarelationisaunique identifier for a

tuple.

Example:

The‘students’relationandtheconstraintthatno2studentshavethasamestudentid(sid). These can

be classified into 3 types as below.

Primary Key:

This is also a candidate key, whose values are used to identify tuples in the relation.It is common to

designate one of the candidate keys as a primary key of the relation.The attributes that form the

primary key ofarelationschemaareunderlined.It isusedtodenoteacandidatekeythat ischosenby the

database designer as theprincipal means of identifying entities with an entity set.

Asuperkey:

is a set of one or more attributes that, taken collectively, allow us to identify uniquely a tuple

in the relation. For example, the ID attribute of the relation instructor is sufficient to

distinguish one instructor tuple from another. Thus, ID is a superkey. The name attribute of

instructor, on the other hand, is not a superkey, because several instructors might have the

same name. A superkey may contain extraneous attributes. For example, the combination of

ID and name is a superkey for the relation instructor. If K is a superkey, then so is any

supersetofK.Weareofteninterestedinsuperkeysforwhichnopropersubsetisasuperkey.

Suchminimalsuperkeysarecalled

candidate keys:

Itiscustomarytolisttheprimarykeyattributesofarelationschemabeforetheotherattributes;

DATABASE SYSTEMS

28

for example, the dept name attribute of department is listed first, since it is the primary key.

Primary key attributes are also underlined. A relation, say r1, may include among itsattributes

the primary key of another relation, say r2. This attribute is called a foreign key from r1,

referencing r2.

SchemaDiagrams

A database schema, along with primary key and foreign key dependencies, can be depictedby

schema diagrams.

Figure2.5:Schemadiagram fortheuniversitydatabase.

Referential integrity constraints other than foreign key constraints are not shown explicitly in

schema diagrams. We will study a different diagrammatic representation called the entity-

relationship diagram.

DATABASE SYSTEMS

29

UNIT III

STRUCTUREDQUERYLANGUAGE

What is SQL?

 SQLisStructuredQueryLanguage,whichisadatabaselanguagedesignedforthe retrieval

and management of data in a relational database.

 AlltheRDBMSsystemslikeMySQL,MSAccess,Oracle,Sybase,Postgres,and SQL

Server use SQL as their standard database language.

WhytoUseSQL?

SQLprovidesaninterfacetoarelationaldatabase.Here

, are important reasons for using SQL

 Ithelps usersto accessdata inthe RDBMSsystem.

 Ithelpsus todescribethedata.

 Itallowsus todefinethedataina databaseandmanipulate thatspecificdata.

 WiththehelpofSQLcommandsinDBMS,wecancreateanddropdatabasesand tables.

 SQLoffersusto usethe functionin adatabase,createaview,andstored procedure.

 Wecansetpermissionsontables,procedures,andviews.

HistoryofSQL

"ARelationalModelofDataforLargeSharedDataBanks"wasapaper whichwaspublished by the

great computer scientist "E.F. Codd" in 1970.

The IBM researchers Raymond Boyce and Donald Chamberlin originally developed the

SEQUEL (Structured English Query Language) after learning from the paper given by E.F.

Codd.TheybothdevelopedtheSQLattheSanJoseResearchlaboratoryof IBMCorporation in

1970. In 1979, Relational Software, Inc. (now Oracle) introduced the first commercially

available implementation of SQL.

DATABASE SYSTEMS

30

SQL became astandardof theAmerican National Standards Institute(ANSI) in 1986, and of

theInternational Organization for Standardization(ISO) in 1987.[11]Since then, the standard

has been revised to include a larger set of features. Despite the existence of standards, most

SQL code requires at least some changes before being ported to different databasesystems.

New versions of the standard were published and most recently, 2016.

Typesof SQL

Hereare fivetypes of widely usedSQL queries.

 DataDefinitionLanguage(DDL)

 DataManipulationLanguage(DML)

 DataControlLanguage(DCL)

 TransactionControl Language(TCL)

 DataQueryLanguage(DQL)

All operations performed on the information in a database are run using SQL statements.

ASQLstatementconsistsofidentifiers,parameters,variables,names,datatypes,andSQL reserved

words.

Whatis DDL?

DATABASE SYSTEMS

31

Createtabletablename(Columnname1Datatype,

Columnname2 Datatype,

……..,

Columnnamendatatype);

Definition:The Language used to define thedatabase structure or schema is

called“Data Definition Language”.

 TheCommands(or) statementsusedto definethestructuteofdatabaseare:

1. CREATE

2. ALTER

3. DROP

4. TRUNCATE

5. RENAME

1. CREATE

Createcommandcanbe usedtocreate

(i) Databases

(ii) Tablesand

(iii) Views.

(i) CreatingDatabase

Syntax:

Ex:createdatabaseMRCET_ITA;

(ii) CreatingTable

Syntax:

Ex:createtableStudent(SRno integer(5),

createdatabasedabasename;

DATABASE SYSTEMS

32

Snamevarchar(20),

Addressvarchar(15));

2. ALTER Command

 TheALTERTABLEstatementisusedtoadd,delete,ormodifycolumnsinan

existing table.

 TheALTERTABLEstatementisalsousedtoadd anddropvariousconstraintsonan

existing table.

1. ALTERTABLE -ADDColumn

Toadd acolumn ina table,usethefollowing syntax:

Ex:ThefollowingSQLaddsan"Email"columntothe "Customers"

table:

ALTERTABLECustomers

ADDEmailvarchar(255);

ALTER TABLE - DROP COLUMN

Todeleteacolumninatable,usethefollowingsyntax(noticethatsomedatabasesystems don't allow

deleting a column):

Syntax:

Ex:Thefollowing SQLdeletes the "Email" columnfrom the"Customers"table:

ALTERTABLEtable_name

ADDcolumn_namedatatype;

ALTERTABLEtable_name

DROPCOLUMNcolumn_name;

DATABASE SYSTEMS

33

ALTERTABLE Customers

DROPCOLUMNEmail;

ALTERTABLE-ALTER/MODIFYCOLUMN

Tochangethedata type of acolumnin atable, usethe following syntax:

SQLServer/MS Access:

MySQL/Oracle(prior version 10G):

Example1:Modifyingsingle Column

Example2:ModifyingMultiple Columns

Oracle10Gand later:

ALTERTABLEtable_name

ALTERCOLUMNcolumn_namedatatype;

Ex:ALTER TABLE supplier

ALTERCOLUMNsupplier_nameVARCHAR(100)NOTNULL;

ALTERTABLEtable_name

MODIFYCOLUMNcolumn_namedatatype;

ALTERTABLE supplier

MODIFYsupplier_namechar(100)NOT NULL;

ALTERTABLE supplier

MODIFYsupplier_nameVARCHAR(100)NOTNULL, MODIFY

city VARCHAR(75);

DATABASE SYSTEMS

34

3.Drop Command

Syntax

Todrop acolumnin an existingtable, theSQLALTER TABLE syntax is:

Example

Let'slookatanexamplethatdrops(ie:deletes)acolumnfromatable. For

example:

ThisSQLALTERTABLEexamplewilldropthecolumn called

supplier_namefrom the table called supplier.

TRUNCATE:

Thiscommandusedtodeletealltherowsfromthetableandfreethespacecontainingthe table.

Syntax:

Example:

WhatisDataManipulationLanguage?

ALTERTABLE supplier

DROP COLUMNsupplier_name;

ALTERTABLEtable_name

MODIFYcolumn_namedatatype;

ALTER TABLE table_name

DROPCOLUMNcolumn_name;

TRUNCATETABLE table_name;

TRUNCATEtablestudents;

DATABASE SYSTEMS

35

Data Manipulation Language (DML) allows user to modify the database instance byinserting,

modifying, and deleting its data. It is responsible for performing all typesdata modification in

a database.

There are three basic constructs which allow database program and user to enter data and

information are:

Herearesomeimportant DMLcommandsin SQL:

 INSERT

 UPDATE

 DELETE

INSERT:This statement is a SQL query. This command is used to insert data into the row of

a table.

Syntax:

For example:

UPDATE:

Thiscommand is used to update ormodify thevalueof acolumn in thetable.

Syntax:

INSERTINTOTABLE_NAME(col1,col2,col3,. col N)

VALUES(value1,value2,value3, valueN);

Or

INSERTINTO TABLE_NAME

VALUES(value1,value2, value3, valueN);

INSERTINTOstudents(RollNo,FIrstName,LastName)VALUES('60','Tom', Erichsen');

UPDATE table_name SET [column_name1= value1,...column_nameN = valueN] [WHERE

CONDITION]

DATABASE SYSTEMS

36

For example:

DELETE:

Thiscommand is used to remove oneor morerows from a table.

Syntax:

For example:

Whatis DCL?

DCL (Data Control Language) includes commands like GRANT and REVOKE, which are

useful to give "rights & permissions." Other permission controls parameters of the database

system.

ExamplesofDCL commands:

Commandsthatcomeunder DCL:

 Grant

 Revoke

Grant:

Thiscommand isuse togive useraccess privilegesto a database.

Syntax:

UPDATEstudents

SETFirstName='Jhon',LastName='Wick' WHERE

StudID = 3;

DELETEFROMtable_name[WHEREcondition];

DELETE FROM students

WHEREFirstName='Jhon';

GRANTSELECT,UPDATEON MY_TABLETOSOME_USER, ANOTHER_USER;

DATABASE SYSTEMS

37

For example:

Revoke:

Itisusefultobackpermissionsfromtheuser.

Syntax:

For example:

What is TCL?

TransactioncontrollanguageorTCLcommandsdealwiththetransactionwithinthe database.

Commit:This commandisused to saveall the transactionsto the database.

Syntax:

For example:

Rollback

Rollback command allows you to undo transactions that have not already been saved to

thedatabase.

Syntax:

GRANTSELECT ONUsers TO'Tom'@'localhost;

REVOKEprivilege_nameONobject_nameFROM{user_name|PUBLIC |role_name}

REVOKESELECT,UPDATEONstudentFROMBCA,MCA;

Commit;

DELETEFROMStudents

WHERE RollNo =25;

COMMIT;

DATABASE SYSTEMS

38

Example:

SAVEPOINT

Thiscommand helpsyou tosets asavepoint withinatransaction.

Syntax:

Example:

What is DQL?

DataQueryLanguage(DQL)isusedtofetchthedatafromthedatabase.Itusesonlyone command:

SELECT:

Thiscommandhelpsyoutoselecttheattributebasedontheconditiondescribedbythe WHERE clause.

Syntax:

For example:

ROLLBACK;

DELETEFROMStudents

WHERE RollNo =25;

SAVEPOINTSAVEPOINT_NAME;

SAVEPOINTRollNo;

SELECTexpressions

FROM TABLES

WHERE conditions;

SELECTFirstName

FROM Student

DATABASE SYSTEMS

39

TCL Commands

TCL Commands in SQL- Transaction Control Language Examples:Transaction Control

Language can be defined as the portion of a database language used for maintaining

consistency of the database and managing transactions in database. A set of SQL statements

that are co-related logically and executed on the data stored in the table is known as

transaction. In this tutorial, you will learn different TCL Commands in SQL with examples

and differences between them.

1. CommitCommand

2. Rollback Command

3. SavepointCommand

TCLCommandsinSQL-Transaction ControlLanguage Examples

The modifications made by the DML commands are managed by using TCL commands.

Additionally, it makes the statements to grouped together into logical transactions.

TCL Commands

Therearethree commands thatcomeundertheTCL:

1. Commit

The main use of Commit command is to make the transaction permanent. If there is a needfor

any transaction to be done in the database that transaction permanent through commit

command.

Syntax:

COMMIT;

ForExample

UPDATESTUDENTSETSTUDENT_NAME=‘Maria’WHERESTUDENT_NAME=

‘Meena’;

COMMIT;

 By using the above set of instructions, you can update the wrong student name by the

correct one and save it permanently in the database. The update transaction gets

completed when commit is used. If commit is not used, then there will be lock on

‘Meena’ record till the rollback or commit is issued.

WHERERollNo>15;

DATABASE SYSTEMS

40

 Now have a look at the below diagram where ‘Meena’ is updated and there is a lock

on her record. The updated value is permanently saved in the database after the use of

commit and lock is released.

2. Rollback

 Usingthiscommand, thedatabase canbe restoredto thelastcommitted state.

 Additionally, it is also used with savepoint command for jumping to a savepoint in a

transaction.

Syntax:

Rollbacktosavepoint-name;

For example

UPDATESTUDENTSETSTUDENT_NAME=‘Manish’WHERESTUDENT_NAME

=‘Meena’;ROLLBACK;

 Thiscommandisusedwhentheuserrealizesthathe/shehasupdatedthewrong information

after the student name and wants to undo this update.

DATABASE SYSTEMS

41

 TheuserscanissuesROLLBACK commandandthenundo theupdate.

Havealookat thebelowtablesto knowbetterabout theimplementation ofthiscommand.

3. Savepoint

The main use of the Savepoint command is to save a transaction temporarily. This way users

can rollback to the point whenever it is needed.

Thegeneralsyntax forthesavepointcommandismentioned below:

savepointsavepoint-name;

ForExample

Followingis thetableofaschool class

UsesomeSQL queriesontheabovetableandthen watch theresults

INSERTintoCLASS VALUES(101, ‘Rahul);

Commit;

UPDATECLASSSET NAME=‘Tyler’whereid=101;

DATABASE SYSTEMS

42

SAVEPOINTA;

INSERTINTOCLASSVALUES(102, ‘Zack’);

SavepointB;

INSERTINTOCLASSVALUES(103, ‘Bruno’)

SavepointC;

Select * from Class;

Theresultwilllooklike

NowrollbacktosavepointB

Rollback to B;

SELECT*from Class;

NowrollbacktosavepointA

rollback to A;

SELECT*from class;

Differencebetweenrollback, commit andsavepointtcl commandsinSQL.

 Rollback Commit Savepoint

DATABASE SYSTEMS

43

1. Databasecanberestoredtothelast

committed state

Savesmodification

made by DML

Commands and it

permanently saves

the transaction.

Itsavesthetransaction

temporarily.

2. Syntax-ROLLBACK[To

SAVEPOINT_NAME];

Syntax-COMMIT; Syntax-SAVEPOINT

[savepoint_name;]

3. Example-ROLLBACK Insert3; Example-

SQL>COMMIT

;

Example-SAVEPOINT

table_create;

In relational database the data is stored as well as retrieved in the form of relations (tables).

Table 1shows the relationaldatabase withonly onerelationcalledSTUDENTwhich stores

ROLL_NO, NAME, ADDRESS, PHONE and AGE of students.

ROLL_NO NAME ADDRESS PHONE AGE

1 RAM DELHI 9455123451 18

2 RAMESH GURGAON 9652431543 18

3 SUJIT ROHTAK 9156253131 20

4 SURESH DELHI 9156768971 18

STARTTRANSACTION;

savepointa;

updatet1setn1=18wheren1=13; rollbackto

a;

DATABASE SYSTEMS

44

Thesearesomeimportantterminologiesthatareusedintermsofrelation.

Attribute:Attributesarethepropertiesthatdefinearelation.e.g.;ROLL_NO,NAMEetc.

Tuple: Each row in the relation is known as tuple. The above relation contains 4 tuples, one

of which is shown as:

1 RAM DELHI 9455123451 18

Degree:Thenumberofattributesintherelationisknownasdegreeoftherelation.The STUDENT

relation defined above has degree 5.

Cardinality:Thenumberoftuplesinarelationisknownascardinality.TheSTUDENT relation

defined above has cardinality 4.

Column:Columnrepresentsthesetofvaluesforaparticularattribute.Thecolumn ROLL_NO

isextracted from relation STUDENT.

ROLL_NO

1

2

3

4

SQLSet Operations

Setoperationsallowthe resultsofmultiplequeries tobecombinedintoa singleresult set.

TheSet Operators combine a similar type of data from two or more SQL database tables. It

mixes the result, which is extracted from two or more SQL queries, into a single result.

Set operators combine more than one select statement in a single query and return a specific

result set.

DATABASE SYSTEMS

45

SetoperatorsincludeUNION,INTERSECT,andEXCEPT.

UNION

In SQL the UNION clause combines the results of two SQL queries into a single table of all

matching rows. The two queries must result in the same number of columns and compatible

datatypesinordertounite.AnyduplicaterecordsareautomaticallyremovedunlessUNION ALL is

used.

Syntaxof UNION:

SELECTcolumn1,column2 ,columnNFROMtable_Name1[WHEREconditions]

UNION

SELECTcolumn1,column2 ,columnN FROMtable_Name2[WHEREconditions];

Asimpleexamplewouldbeadatabasehavingtablessales2005andsales2006thathave

identicalstructuresbutareseparatedbecauseofperformanceconsiderations.AUNION

query could combine results from both tables.

NotethatUNIONALLdoesnotguaranteetheorderofrows.Rowsfromthesecondoperand may

appear before, after, or mixed with rows from the first operand. In situations where a specific

order is desired, ORDER BY must be used.

NotethatUNIONALLmaybemuch fasterthanplain UNION.

sales2005

person

amount

Joe

1000

Alex

2000

DATABASE SYSTEMS

46

 sales2006

person

amount

Joe

2000

Alex

2000

Zach

35000

Executingthisstatement:

SELECT*FROMsales2005UNIONSELECT* FROMsales2006;

yieldsthisresultset,thoughtheorderoftherowscanvarybecausenoORDERBYclause was

supplied:

person

amount

Joe

1000

Alex

2000

Bob

5000

5000

Bob

DATABASE SYSTEMS

47

Joe

2000

Zach

35000

UNIONALLgivesdifferentresults,becauseitwillnoteliminateduplicates.Executingthis statement:

SELECT*FROMsales2005UNIONALLSELECT*FROM sales2006;

wouldgivetheseresults,againallowing variance forthelackof an ORDERBY statement:

person

amount

Joe

1000

Joe

2000

Alex

2000

Alex

2000

Bob

5000

Zach

35000

DATABASE SYSTEMS

48

INTERSECT

The SQL INTERSECT operator takes the results of two queries and returns only rows that

appearinbothresultsets.ForpurposesofduplicateremovaltheINTERSECToperatordoes not

distinguish between NULLs.

The INTERSECT operator removes duplicate rows from the final result set. The

INTERSECTALLoperatordoesnotremoveduplicaterowsfromthefinalresultset,butifa row

appears X times in the first query and Y times in the second, it will appear min(X, Y) times

in the result set.

ThedatatypeandthenumberofcolumnsmustbethesameforeachSELECTstatementused with the

INTERSECT operator.

Syntaxof INTERSECT

SELECTcolumn1,column2 ,columnNFROMtable_Name1[WHEREconditions]

INTERSECT

SELECTcolumn1,column2 ,columnNFROMtable_Name2[WHEREconditions];

Let'sunderstandthebelowexamplewhichexplainshowtoexecuteINTERSECToperatorin Structured

Query Language:

Inthisexample,weusedtwotables.BothtableshavefourcolumnsEmp_Id,Emp_Name, Emp_Salary, and

Emp_City.

Employee_details1:

EmpId EmpName EmpSalary EmpCity

201 Sanjay 25000 Delhi

202 Ajay 45000 Delhi

203 Saket 30000 Aligarh

DATABASE SYSTEMS

49

Employee_details2:

EmpId EmpName EmpSalary EmpCity

203 Saket 30000 Aligarh

204 Saurabh 40000 Delhi

205 Ram 30000 Kerala

201 Sanjay 25000 Delhi

Suppose,wewanttoseeacommonrecordoftheemployeefromboththetablesinasingle output. For

this, we have to write the following query in SQL:

SELECTEmp_NameFROMEmployee_details1

INTERSECT

SELECTEmp_NameFROMEmployee_details2;

EmpId EmpName EmpSalary EmpCity

201 Sanjay 25000 Delhi

203 Saket 30000 Aligarh

EXCEPT

TheSQLEXCEPToperatortakesthedistinctrowsofonequeryand returnstherowsthatdo not

appear in asecond result set. For purposes of row elimination and duplicate removal, the

EXCEPT operator does not distinguish between NULLs. The EXCEPT ALL operator does

not remove duplicates, but if a row appears X times in the first query and Y times in the

second, it will appear max(X - Y, 0) times in the result set.

Notably,theOracleplatformprovidesaMINUSoperatorwhichisfunctionallyequivalentto the

SQL standard EXCEPT DISTINCT operator.

DATABASE SYSTEMS

50

|OID|DATE |CUSTOMER_ID|AMOUNT|

+ + + + +

|102|2009-10-0800:00:00|3|3000|

+ + + + +

|1|Ramesh|32|Ahmedabad|2000.00|

|2|Khilan|25|Delhi|1500.00|

|3|kaushik|23|Kota|2000.00|

|4|Chaitali|25|Mumbai|6500.00|

|5|Hardik|27|Bhopal|8500.00|

|6|Komal|22|MP |4500.00|

|7|Muffy|24|Indore|10000.00|

+ + + + + +

+

|SALARY|

+

|ID|NAME |AGE|ADDRESS

+ + + + +

+ + + + +

ThefollowingexampleEXCEPTqueryreturnsallrowsfromtheOrderstablewhere

Quantity is between 1 and 49, and those with a Quantity between 76 and 100.

Wordedanotherway;thequeryreturnsallrowswheretheQuantityisbetween1and100, apart from

rows where the quantity is between 50 and 75.

SELECT*FROMOrdersWHEREQuantityBETWEEN1AND100

EXCEPT

SELECT*FROMOrders WHEREQuantityBETWEEN50AND 75;

Joins

Ajoinisaquerythatcombinesrowsfromtwoormoretables,views, based on a common field

between them.

Considerthefollowingtwotables−

Table1−CUSTOMERS Table

Table2−ORDERSTable

DATABASE SYSTEMS

51

|100|2009-10-0800:00:00|3|1500|

|101|2009-11-2000:00:00|2|1560|

|103|2008-05-2000:00:00|4|2060|

+ + + + +

Now,let usjoin thesetwotables inour SELECT statementas shown below.

Thiswould producethe following result.

+ + + + +

|ID |NAME |AGE|AMOUNT|

+ + + + +

|3|kaushik|23|3000|

|3|kaushik|23|1500|

|2|Khilan|25|1560|

|4|Chaitali|25|2060|

+ + + + +

Here, it is noticeable that the join is performed in the WHERE clause. Several operators can

be used to join tables, such as =, <, >, <>, <=, >=, !=, BETWEEN, LIKE, and NOT; theycan

all be used to join tables. However, the most common operator is the equal to symbol.

SQLJOINS:EQUIJOIN and NONEQUI JOIN

Thearetwotypes ofSQLJOINS-EQUI JOINandNON EQUI JOIN

1) SQL EQUI JOIN:

TheSQLEQUIJOINis asimpleSQLjoinusestheequalsign(=)asthecomparisonoperator for the

condition. It has two types - SQL Outer join and SQL Inner join.

2) SQLNON EQUIJOIN :

TheSQLNON EQUIJOINis ajoin uses comparisonoperator other thantheequal sign like

>,<, >=,<=withthecondition.

SELECTID,NAME,AGE,AMOUNTFROMCUSTOMERS,ORDERS

WHERECUSTOMERS.ID= ORDERS.CUSTOMER_ID;

DATABASE SYSTEMS

52

SQLEQUIJOIN:INNERJOIN andOUTERJOIN

TheSQLEQUIJOINcan beclassified into two types-INNER JOINandOUTER JOIN

1. SQLINNER JOIN

ThistypeofEQUIJOINreturnsallrowsfromtableswherethekeyrecordofonetableis equal to the

key records of another table.

2. SQLOUTER JOIN

This type of EQUI JOIN returns all rows from one table and only those rows from the

secondarytablewherethejoinedconditionissatisfyingi.e.thecolumnsareequalinboth tables.

Inordertoperform aJOINquery,therequiredinformationweneedare:

a) Thename ofthe tables

b) Nameofthecolumns of twoormoretables, based onwhich acondition will perform.

Syntax:

FROM table1

join_typetable2

[ON (join_condition)]

ONcanbereplacedwithWHERE

PictorialPresentationofSQLJoins:

DATABASE SYSTEMS

53

Let’sConsiderthetwotablesgiven below.

Tablename- Student:

id Name class city

3 Hina 3 Delhi

4 Megha 2 Delhi

6 Gouri 2 Delhi

Tablename—Record:

id

Class

City

9 3 Delhi

10 2 Delhi

12 2 Delhi

DATABASE SYSTEMS

54

EQUI JOIN :

EQUIJOINcreatesaJOINforequalityor matchingcolumn(s)valuesoftherelativetables. EQUI

JOIN also create JOIN by using JOIN with ON and then providing the names of the columns

with their relative tables to check equality using equal sign (=).

Syntax :

SELECT column_list

FROMtable1,table2....

WHEREtable1.column_name=

table2.column_name;

Example–

SELECTstudent.name,student.id,record.class,record.city

FROM student, record

WHEREstudent.city=record.city;

Output:

name

Id

class

City

Hina 3 3 Delhi

Megha 4 3 Delhi

Gouri 6 3 Delhi

Hina 3 2 Delhi

Megha 4 2 Delhi

Gouri 6 2 Delhi

Hina 3 2 Delhi

DATABASE SYSTEMS

55

name Id class City

Megha 4 2 Delhi

Gouri 6 2 Delhi

2. NONEQUIJOIN:

NONEQUIJOINperformsaJOINusingcomparisonoperatorotherthanequal(=)signlike

>,<,>=,<=withconditions.

Syntax:

SELECT*

FROMtable_name1,table_name2

WHEREtable_name1.column[>|<|>=|<=]table_name2.column;

Example–

SELECT student.name, record.id, record.city

FROM student, record

WHEREStudent.id<Record.id;

Output:

name Id city

Hina 9 Delhi

Megha 9 Delhi

Gouri 9 Delhi

Hina 10 Delhi

Megha 10 Delhi

DATABASE SYSTEMS

56

name Id city

Gouri 10 Delhi

Hina 12 Delhi

Megha 12 Delhi

Gouri 12 Delhi

NestedQueriesinSQL:

Innestedqueries,aqueryiswritteninsideaquery.Theresultofinnerqueryisusedin execution of

outer query. Nested Queries are also called assubqueries.

Subqueriesareusefulwhenyoumustexecutemultiplequeriestosolveasingleproblem. Each query

portion of a statement is called a query block. In the following query, the subquery in

parentheses is the inner query block:

SELECTfirst_name,last_nameFROMemployees

WHEREdepartment_id

IN (SELECTdepartment_id

FROM departments

WHERElocation_id=1800);

 TheinnerSELECTstatementretrievestheIDsofdepartmentswithlocationID1800. These

department IDs are needed by the outer query block, which retrieves names of

employees in the departments whose IDs were supplied by the subquery.

 ThestructureoftheSQLstatementdoesnotforcethedatabasetoexecutetheinner query

first. For example, the database could rewrite the entire query as a join of

employees and departments, so that the subquery never executes by itself.

Subqueriescanbecorrelated oruncorrelated.

Correlatedsubquery-Incorrelatedsubquery,innerqueryisdependentontheouterquery. Outer

query needs to be executed before inner query

DATABASE SYSTEMS

57

Non-Correlatedsubquery-Innon-correlatedqueryinnerquerydoesnotdependentonthe outer

query. They both can run separately.

CorrelatedSubqueries

Acorrelatedsubquerytypicallyobtainsvaluesfromitsouterquerybeforeitexecutes.When the

subquery returns, it passes its results to the outer query.

Inthefollowingexample,thesubqueryneedsvaluesfromtheaddresses.statecolumninthe outer

query:

=>SELECTname,street,city,stateFROM addresses

WHEREEXISTS(SELECT*FROMstatesWHEREstates.state=addresses.state); This

query is executed as follows:

 Thequeryextractsandevaluateseachaddresses.statevalueintheoutersubquery

records.

 Thenthequery—usingtheEXISTSpredicate—checkstheaddressesintheinner

(correlated) subquery.

 BecauseitusestheEXISTSpredicate,thequerystopsprocessingwhenitfindsthe first

match.

NoncorrelatedSubqueries

Anoncorrelatedsubqueryexecutesindependentlyoftheouterquery.Thesubqueryexecutes first,

and then passes its results to the outer query, For example:

=>SELECTname,street,city,stateFROMaddressesWHEREstateIN(SELECTstate FROM

states);

Thisqueryisexecutedasfollows:

 ExecutesthesubquerySELECT stateFROM states(in bold).

 Passesthesubqueryresults totheouter query.

Aquery'sWHEREandHAVINGclausescanspecifynoncorrelatedsubqueriesifthe

subquery resolves to a single row, as shown below:

DATABASE SYSTEMS

58

InWHERE clause

=>SELECT COUNT(*) FROM SubQ1WHERESubQ1.a=(SELECTy from SubQ2);

InHAVING clause

=>SELECTCOUNT(*)FROMSubQ1GROUP BYSubQ1.aHAVINGSubQ1.a=

(SubQ1.a& (SELECT y from SubQ2)

Aggregatefunctions:

Aggregatefunctionsoperateonvaluesacrossrowstoperformmathematicalcalculationssuch

assum,average,counting,minimum/maximumvalues,standarddeviation,andestimation,as well

as some non-mathematical operations.

Anaggregatefunctiontakesmultiplerows(actually,zero,one,ormorerows)asinputand produces a

single output.

VariousAggregate Functions:

1. COUNT([DISTINCT]A):Thenumberof(unique)valuesintheAcolumn.

2. SUM([DISTINCT]A):Thesumofall(unique)valuesintheAcolumn.

3. AVG([DISTINCT]A):Theaverageofall(unique)valuesintheAcolumn.

4. MAX(A): Themaximum valuein theA column.

5. MIN (A):Theminimum valuein theA column.

Letus consideratable that contains thefollowingdata:

Theaggregate function returns oneoutputrowformultiple input rows:

selectx,yfromsimpleorderbyx,y;

+ + +

|X|Y|

| + |

|10|20|

|20|44|

|30|70|

+----+ --- +

selectsum(x)

DATABASE SYSTEMS

59

Now let us understand each Aggregate function with a example:

Id Name Salary

1 A 80

2 B 40

3 C 60

4 D 70

5 E 60

6 F Null

Count():

Count(*):Returnstotalnumberofrecords.i.e6.

Count(salary):Return numberof NonNull values overthecolumnsalary.i.e 5.

Count(DistinctSalary):Returnnumberofdistinct NonNull valuesover thecolumn salary

.i.e 4.

Sum():

sum(salary):Sum allNon Nullvalues ofColumn salaryi.e., 310

sum(Distinctsalary):SumofalldistinctNon-Nullvaluesi.e., 250.

Avg():

Avg(salary)=Sum(salary)/count(salary)= 310/5

Avg(Distinctsalary) =sum(Distinctsalary)/Count(DistinctSalary)=250/4

fromsimple;

+ +

|SUM(X)|

| |

| 60|

+ +

DATABASE SYSTEMS

60

selectcount(x,y)fromt;

+ +

|COUNT(X, Y)|

|

|

+

|

1|

+

Min():

Min(salary):MinimumvalueinthesalarycolumnexceptNULLi.e.,40.

Max(salary):Maximum valuein thesalary i.e., 80.

AggregateFunctionsandNULLValues

SomeaggregatefunctionsignoreNULLvalues.Forexample,AVGcalculatestheaverageof values

1, 5, and NULL to be 3, based on the following formula:

(1 +5) / 2 =3

IfallofthevaluespassedtotheaggregatefunctionareNULL,thentheaggregatefunction returns

NULL.

Someaggregatefunctionscanbepassedmorethanonecolumn.Forexample: select

count(col1, col2) from table1;

Intheseinstances,theaggregatefunctionignoresarowif anyindividualcolumnis NULL.

Querythe table:

Similarly, if SUM is called with an expression that references two or more columns, and if

oneormoreofthosecolumnsisNULL,thentheexpressionevaluatestoNULL,andtherow is

ignored:

insertintot(x,y)values

(1,2),-- No NULLs.

(3,null),--OnebutnotallcolumnsareNULL.

(null,6),--OnebutnotallcolumnsareNULL.

(null,null);-- All columns are NULL.

selectsum(x+y)fromt;

+ +

DATABASE SYSTEMS

61

|SUM(X+Y) |

|

|

+

|

3|

+

SQLalsoprovidesaspecialcomparisonoperatorISNULLtotestwhetheracolumnvalueis null; for

example the value of y IS NULL returns true when x is 3 and IS NOT NULL returns false.

INTRODUCTIONTO VIEWS

Aviewisatablewhoserowsarenotexplicitlystoredinthedatabasebutarecomputedas needed.

Views in SQL are kind of virtual tables. A view also has rows and columns as they are in a

real table in the database. We can create a view by selecting fields from one or more tables

presentinthedatabase.AViewcaneitherhavealltherowsofatableorspecificrowsbased on certain

condition.

SampleTables:

CREATINGVIEWS

StudentDetails

StudentMarks

WecancreateViewusingCREATEVIEWstatement.AViewcanbecreatedfromasingle table or

multiple tables.

DATABASE SYSTEMS

62

Syntax:

CREATEVIEWview_nameASSELECTcolumn1,column2..... FROM

table_nameWHERE condition;

view_name: Name for the View

table_name: Name of the table

condition:Conditiontoselectrows

Examples:

CreatingViewfromasingletable:

InthisexamplewewillcreateaViewnamedDetailsViewfromthetableStudentDetails. Query:

CREATEVIEWDetailsViewASSELECTNAME,ADDRESS

FROMStudentDetailsWHERES_ID<5;

Toseethe dataintheView, wecanquery theviewinthesame manneraswequeryatable.

SELECT*FROM DetailsView;

Output:

Creating View from multiple tables: In this example we will create a View named

MarksViewfromtwotablesStudentDetailsandStudentMarks.TocreateaViewfrom multiple

tables we can simply include multiple tables in the SELECT statement.

Query:

CREATEVIEWMarksViewAS

SELECTStudentDetails.NAME,StudentDetails.ADDRESS,StudentMarks.MARKS FROM

StudentDetails, StudentMarks

WHEREStudentDetails.NAME=StudentMarks.NAME;

DATABASE SYSTEMS

63

Todisplaydata ofViewMarksView:

SELECT*FROM MarksView;

Output:

DELETING VIEWS

SQLallowsustodeleteanexistingView.WecandeleteordropaViewusingtheDROP statement.

Syntax:

DROPVIEW view_name;

view_name:Nameof theView whichwewanttodelete.

Forexample,ifwe wanttodeletetheViewMarksView,we candothis as:

DROPVIEW MarksView;

UPDATING VIEWS

Therearecertainconditionsneededtobesatisfiedtoupdateaview.Ifanyoneofthese conditions is

not met, then we will not be allowed to update the view.

1. TheSELECTstatementwhichisusedtocreatetheviewshouldnotincludeGROUP BY

clause or ORDER BY clause.

2. TheSELECTstatement shouldnothavetheDISTINCT keyword.

3. TheView should haveall NOTNULL values.

4. Theviewshould notbecreated usingnestedqueries orcomplex queries.

DATABASE SYSTEMS

64

5. Theviewshouldbecreatedfromasingletable.Iftheviewiscreatedusingmultiple tables

then we will not be allowed to update the view.

WecanusetheCREATEORREPLACEVIEWstatementtoaddorremovefieldsfroma view.

Syntax:

CREATEORREPLACEVIEWview_nameAS

SELECT column1,coulmn2,..

FROM table_name

WHEREcondition;

Forexample,ifwewanttoupdatetheviewMarksViewandaddthefieldAGEtothisView from

StudentMarks Table, we can do this as:

CREATEORREPLACEVIEWMarksViewAS

SELECTStudentDetails.NAME,StudentDetails.ADDRESS,StudentMarks.MARKS,

StudentMarks.AGEFROM StudentDetails, StudentMarks

WHEREStudentDetails.NAME=StudentMarks.NAME; If

we fetch all the data from MarksView now as:

SELECT*FROM MarksView;

Output:

Insertingarowinaview:

We can insert a row in a View in a same way as we do in a table. We can use the INSERT

INTO statement of SQL to insert a row in a View.Syntax:

INSERT INTO view_name(column1, column2 , column3,..)

VALUES(value1, value2, value3..);

view_name:NameoftheView

DATABASE SYSTEMS

65

Example:

In the below example we will insert a new row in the View DetailsView which we have

created above in the example of “creating views from a single table”.

INSERTINTODetailsView(NAME,ADDRESS)

VALUES("Suresh","Gurgaon");

If we fetch all the data from DetailsView now as,

SELECT * FROM DetailsView;

Output:

DeletingarowfromaView:

Deleting rows from a view is also as simple as deleting rows from a table. We can use the

DELETE statement of SQL to delete rows from a view. Also deleting a row from a view

first delete the row from the actual table and the change is then reflected in the

view.Syntax:

DELETE FROM view_name

WHERE condition;

view_name:Nameofviewfromwherewewanttodeleterows

condition:Conditiontoselectrows

Example:

In this example we will delete the last row from the view DetailsView which we just added

in the above example of inserting rows.

DELETE FROM DetailsView

WHERE NAME="Suresh";

DATABASE SYSTEMS

66

If we fetch all the data from DetailsView now as,

SELECT * FROM DetailsView;

Output:

TRIGGERS

A trigger is a stored procedure that is automatically invoked by the DBMS in response to

specified changes to the database, and is typically specified by the DBA. A database that

has a set of associated triggers is called an active database. A trigger description contains

three parts:

Event:Achangetothedatabasethatactivatesthetrigger.

Condition:Aqueryortestthatisrunwhenthetriggerisactivated.

Action:Aprocedurethatisexecutedwhenthetriggerisactivatedanditscon-ditionistrue.

A trigger action can examine the answers to the query in the condition part of the trigger,

refer to old and new values of tuples modified by the statement activating the trigger,

execute new queries, and make changes to the database.

Syntax:

create trigger [trigger_name]

[before | after]

{insert | update | delete}

on [table_name]

[for each row]

[trigger_body]

DATABASE SYSTEMS

67

Explanationofsyntax:

1. create trigger [trigger_name]: Creates or replaces an existing trigger with the

trigger_name.

2. [before|after]:Thisspecifieswhenthetriggerwillbeexecuted.

3. {insert|update|delete}:ThisspecifiestheDMLoperation.

4. on[table_name]:Thisspecifiesthenameofthetableassociatedwiththetrigger.

5. [for each row]: This specifies a row-level trigger, i.e., the trigger will be executed for

each row being affected.

6. [trigger_body]:Thisprovidestheoperationtobeperformedastriggerisfired

BEFOREandAFTERofTrigger:

BEFORE triggers run the trigger action before the triggering statement is run.

AFTER triggers run the trigger action after the triggering statement is run.

ExamplesofTriggersinSQL

The trigger called init count initializes a counter variable before every execution of an

INSERT statement that adds tuples to the Students relation. The trigger called incr count

increments the counter for each inserted tuple that satisfies the condition age < 18.

CREATE TRIGGER init count BEFORE INSERT ON Students /* Event */

DECLARE

countINTEGER;

BEGIN

count:=0;

END

/*Action*/

CREATE TRIGGER incr count AFTER INSERT ON Students /* Event */

WHEN (new.age< 18) /* Condition; ‘new’ is just-inserted tuple */

FOREACHROW

BEGIN/*Action;aprocedureinOracle’sPL/SQLsyntax*/

DATABASE SYSTEMS

68

count :=count +1;

END

(identifyingthemodifiedtable,Students,andthekindofmodifyingstatement,an INSERT), and the

third field is the number of inserted Students tuples with age < 18. (The trigger in Figure 5.19

only computes the count; an additional trigger is required to insert the appropriate tuple into

the statistics table.)

CREATE TRIGGER set count AFTER INSERT ON Students /* Event */

REFERENCING NEW TABLE AS InsertedTuples

FOREACHSTATEMENT

INSERT/*Action*/

INTO StatisticsTable(ModifiedTable, ModificationType, Count) SELECT

‘Students’,‘Insert’,COUNT*FROMInsertedTuplesIWHEREI.age<18

DATABASE SYSTEMS

69

UNIT IV

DEPENDENCIESANDNORMALFORMS

Importance of a good schema design

Whatis aDatabaseSchema?

A database schema is a blueprint that represents the tables and relations of a data set. Good

databaseschemadesignisessentialtomakingyourdatatractablesothatyoucanmakesense of it and

build the dashboards, reports, and data models that you need.

Itisimportanttohaveagooddatabaseschemadesign.Thereasonsare:

 Withoutagooddatabasedesign,thedatabaseislikelytobeunsatisfactory.

 A good database design must be implemented in such ways that the queries are written

in a simple and easier manner.

 A good database design doesn’t have data redundancies (data redundancy refers to

duplication of data.).

 The accuracy must be good enough after the implementation of good database design.

Four specific issues resulting from bad schema design:

1. ReferentialIntegrity:apoorlydonedatabasedesignleavestheapplication

vulnerable to referential integrity issues.

2. Scalability:apoorlydonedesignwouldstruggletoscalewhenfutureapplication

functionality is added.

3. Performance:over-orunder-normalizationcanresultinsignificantperformance

issues in the application that attempts to work with the model.

4. Maintainability:apoordatabasedesignwillmakelifemiserablefordevelopers

attempting to code against the model or to comprehend the model to diagnose

issues.

IntroductionofDatabaseNormalization

Database normalization is the process of structuring and handling the relationship between

data to minimize redundancy in the relational table and avoid the unnecessary anomalies

propertiesfromthedatabaselikeinsertion,updateanddelete.Ithelpstodividelargedatabase

DATABASE SYSTEMS

70

tablesintosmallertablesandmakearelationshipbetweenthem.Itcanremovetheredundant data

and ease to add, manipulate or delete table fields.

A normalization defines rules for the relational table as to whether it satisfies the normal

form. Anormal form is a process that evaluates each relation against defined criteria and

removesthemulti valued,joins,functionalandtrivialdependencyfrom arelation. Ifanydata is

updated, deleted or inserted, it does not cause any problem for database tables and help to

improve the relational table' integrity and efficiency.

Objectiveof Normalization

1. Itisusedtoremovetheduplicatedataanddatabaseanomaliesfromtherelational table.

2. Normalizationhelpstoreduceredundancyandcomplexitybyexaminingnewdata types

used in the table.

3. It is helpful to divide the large database table into smaller tables and link them using

relationship.

4. Itavoidsduplicatedataornorepeatinggroupsintoa table.

5. Itreducesthechancesfor anomaliestooccurin adatabase.

FunctionalDependency

The functional dependency is a relationship that exists between two attributes. It typically

exists between the primary key and non-key attribute within a table.

ForanyrelationR,attributeYisfunctionallydependentonattributeX(usuallythePK),iffor every

valid instance of X, that value of X uniquely determines the value of Y. This relationship is

indicated by the representation below :

X→Y

TheleftsideofFDisknownasadeterminant,therightsideoftheproductionisknownasa dependent.

For example:

Assumewehavean employeetablewith attributes:Emp_Id, Emp_Name, Emp_Address.

DATABASE SYSTEMS

71

HereEmp_IdattributecanuniquelyidentifytheEmp_Nameattributeofemployeetable because if

we know the Emp_Id, we can tell that employee name associated with it.

Functionaldependencycanbewrittenas:

Emp_Id → Emp_Name

Wecansay thatEmp_Nameis functionallydependenton Emp_Id.

A function dependencyA → B means for all instances of a particular value of A, there is

the same value of B.

For example in the below table A → B is true, but B → A is not true as there are different

values of A for B = 3.

AB

1 3

2 3

4 0

1 3

4 0

TrivialFunctionalDependency

o A→B hastrivial functional dependency ifB isasubsetofA.

o Thefollowingdependenciesarealsotriviallike:A→A,B→B

Examples

o ABC→AB

o ABC→A

o ABC→ABC

DATABASE SYSTEMS

72

NonTrivialFunctionalDependencies

X→YisanontrivialfunctionaldependencywhenYisnotasubsetofX.

o X→Yiscalledcompletelynon-trivialwhenXintersectYisNULL.

Example:

o Id→Name,

o Name→DOB

SemiNonTrivialFunctionalDependencies

X→Yiscalledseminon-trivialwhenXintersectYisnotNULL.

Examples:

o AB→BC,

o AD→DC

Armstrong’sAxiomsinFunctionalDependency

The term Armstrong axioms refer to the sound and complete set of inference rules or

axioms, introduced by William W. Armstrong, that is used to test the logical implication

of functional dependencies.

IfFis a set offunctional dependencies then the closureof F, denoted as F+, is theset of all

functionaldependencieslogicallyimpliedbyF.Armstrong'sAxiomsareasetofrules,that when

applied repeatedly, generates a closure of functional dependencies.

1. Axiomofreflexivity–

If X is a set of attributes and Y is subset of X, then X holds Y.

If X ⊇ Y then X→Y

Example:

X={a,b,c,d,e} Y =

{a, b, c}

Thispropertyistrivialproperty.

2. Axiomofaugmentation–

Theaugmentationisalsocalledasapartialdependency.Inaugmentation,ifXdetermines Y, then

XZ determines YZ for any Z.

IfX →Ythen XZ→YZ

DATABASE SYSTEMS

73

Example:

ForR(ABCD),ifA→B thenAC→BC

3. Axiomoftransitivity–

In the transitive rule, if X determines Y and Y determine Z, then X must also

determineZ.

IfX→Y andY→ZthenX→Z

SecondaryRules–

Theserulescanbederivedfromtheaboveaxioms.

1. Union–

Unionrulesays,ifXdeterminesYandXdeterminesZ,thenXmustalsodetermineY and Z.

IfX →YandX→ZthenX→ YZ

2. Decomposition–

Decomposition rule is also known as project rule. It is the reverse of union rule.This Rule

says, if X determines Y and Z, then X determines Y and X determines Z separately.

IfX→YZthenX→Y and X→ Z

3. PseudoTransitivity–

InPseudotransitiveRule,ifXdeterminesYandYZdeterminesW,thenXZdetermines W.

IfX→YandYZ→WthenXZ→W

MinimalCovers:

A minimal cover of a set of functional dependencies (FD) E is a minimal set of dependencies

F that is equivalent to E.

Theformal definitionis:Aset ofFDFtobe minimalif itsatisfiesthefollowing conditions−

DATABASE SYSTEMS

74

 Everydependency inFhas asingleattributeforits right-hand side.

 Wecannot replace any dependency X->Ain F with adependency Y->A, where Yis a

proper subset of X, and still have a set of dependencies that is equivalent to F.

 We cannot remove any dependency from F and still have a set of dependencies thatare

equivalent to F.

CanonicalcoveriscalledminimalcoverwhichiscalledtheminimumsetofFDs.AsetofFD FC is

called canonical cover of F if each FD in FC is a −

 Simple FD.

 Leftreduced FD.

 Non-redundantFD.

SimpleFD−X->Yis asimpleFD if Yis a singleattribute.

LeftreducedFD−X->YisaleftreducedFDiftherearenoextraneousattributesinX.

{extraneousattributes:LetXA->Ythen,Aisaextraneousattributeif X_>Y}

Non-redundantFD−X->YisaNon-redundantFDifitcannotbederivedfromF-{X->y}. Example

ConsideranexampletofindcanonicalcoverofF.

Thegivenfunctionaldependenciesareasfollows −

A->BC

B -> C

A -> B

AB->C

 Minimal cover: The minimal cover is the set of FDs which areequivalent to the given

FDs.

 Canonicalcover: Incanonicalcover,theLHS(LeftHandSide)mustbe unique.

Firstofall,wewill findtheminimalcover andthenthecanonical cover.

Firststep−ConvertRHSattributeintosingletonattribute.

DATABASE SYSTEMS

75

A->B

A->C

B -> C

A -> B

AB->C

Secondstep−RemovetheextraLHSattribute Find

the closure of A.

A+={A, B, C}

So,AB->CcanbeconvertedintoA->C A ->

B

A->C

B->C

A->B

A->C

Thirdstep−RemovetheredundantFDs. A -

> B

A->C

Now, we will convert the above set of FDs into canonical cover.

ThecanonicalcoverfortheabovesetofFDswillbeasfollows−

A->BC

B->C

NORMAL FORMS

Givenarelationschema,weneedtodecidewhetheritisagooddesignorwhetherweneedto decompose it

into smaller relations. Such a decision must be guided by an understanding of

DATABASE SYSTEMS

76

what problems, if any, arise from the current schema. To provide such guidance, several

normalformshavebeenproposed.Ifarelationschemaisinoneofthesenormalforms,we know that

certain kinds of problems cannot arise.

Thenormal formsbasedon FDs:

FirstNormalForm (1NF):

FirstNormalFormisdefinedinthedefinitionofrelations(tables)itself.Thisruledefinesthat all the

attributes in a relation must have atomic domains. The values in an atomic domain are

indivisible units.

Inthefirstnormalform,onlysinglevaluesarepermittedattheintersectionofeachrowand column;

hence, there are no repeating groups.

Tonormalizearelationthatcontainsarepeatinggroup,removetherepeatinggroupandform two new

relations.

Were-arrangetherelation (table)asbelow, toconvertit toFirstNormal Form.

Eachattributemustcontain onlyasinglevalue fromitspre-defined domain.

SecondNormalForm (2NF):

Beforewelearnabout thesecondnormal form, weneed to understandthefollowing −

 Prime Key attribute− An attribute, which is a part of the candidate-key, is knownas

a prime attribute.

DATABASE SYSTEMS

77

 Non-prime attribute− An attribute, which is not a part of the prime-key, is said tobe

a non-prime attribute.

 For the second normal form, the relation must first be in 1NF. The relation is

automaticallyin2NFif,andonlyif,thePrimeKeycomprisesasingleattribute.

 IftherelationhasacompositePrimeKey,theneachnon-keyattributemustbefully

dependent on the entire PK and not on a subset of the PK.

 Arelationisin2NFifithasNoPartialDependency.

 Partial Dependency – If the proper subset of candidate key determines non-prime

attribute, it is called partial dependency.

WeseehereinStudent_ProjectrelationthattheprimekeyattributesareStu_IDandProj_ID.

According to the rule, non-key attributes, i.e. Stu_Name and Proj_Name must be dependent

upon both and not on any of the prime key attribute individually. But we find that Stu_Name

canbeidentifiedbyStu_IDandProj_NamecanbeidentifiedbyProj_IDindependently.This is

called partial dependency, which is not allowed in Second Normal Form.

Webroketherelationintwoasdepictedintheabovepicture.Sothereexistsnopartial dependency.

ThirdNormal Form(3NF):

Tobein thirdnormal form,the relationmustbe insecond normalform. Also

- alltransitivedependenciesmustberemoved;anon-keyattributemaynotbefunctionally

dependent on another non-key attribute.

DATABASE SYSTEMS

78

- Foranynon-trivialfunctionaldependency, X→ A,theneither−

o Xisasuperkey or,

o A is primeattribute.

Transitive dependency – If A->B and B->C are two FDs then A->C is called transitive

dependency.

We find that in the above Student_detail relation, Stu_ID is the key and only prime key

attribute. We find that City can be identified by Stu_ID as well as Zip itself. Neither Zip is a

superkeynorisCityaprimeattribute.Additionally,Stu_ID→Zip→City,sothere exists transitive

dependency.

To bring this relation into third normal form, we break the relation into two relations as

follows −

Boyce-CoddNormalForm(BCNF):

Boyce-Codd Normal Form (BCNF) is an extension of Third Normal Form on strict terms.

A relation is in BCNF iff in every non-trivial functional dependency X –> Y, X is a super

key.

In the above example, Stu_ID is the super-key in the relation Student_Detail and Zip is the

super-key in the relation ZipCodes. So,

Stu_ID→Stu_Name,Zip and

Zip → City

DATABASE SYSTEMS

79

Whichconfirmsthat boththerelations arein BCNF.

DECOMPOSITIONS

Arelationin BCNFis freeof redundancyand arelation schemain 3NFcomes close.

Ifarelationschemaisnotinoneofthesenormalforms,theFDsthatcauseaviolationcan give us

insight into the potential problems..

AdecompositionofarelationschemaRconsistsofreplacingtherelationschemaby

two(ormore) relationschemasthateachcontain asubsetoftheattributes of Randtogether

include all attributes in R.

When a relation in the relational model is not appropriate normal form then the

decomposition of a relation is required. In a database, breaking down the table into multiple

tables termed as decomposition.

Thepropertiesofarelationaldecompositionarelistedbelow:

1. AttributePreservation:

Using functional dependencies the algorithms decompose the universal relation schema

Rina setofrelationschemasD={R1, R2, ….. Rn}relationaldatabase schema, where ‘D’ is

called the Decomposition of R.

The attributes in R will appear in at least one relation schema Ri in the decomposition,

i.e., no attribute is lost. This is called the Attribute Preservation condition of

decomposition.

2. DependencyPreservation:

If each functional dependency X->Y specified in F appears directly in one of therelation

schemas Ri in the decomposition D or could be inferred from the dependencies that

appear in some Ri. This is the Dependency Preservation.

If a relation R is decomposed into relation R1 and R2, then the dependencies of R either

must be a part of R1 or R2 or must be derivable from the combination of functional

dependencies of R1 and R2.

For example, suppose there is a relation R (A, B, C, D) with functional dependency set

(A->BC). The relational R is decomposed into R1(ABC) and R2(AD) which is dependency

preserving because FD A->BC is a part of relation R1(ABC).

DATABASE SYSTEMS

80

3. LosslessJoin:

Lossless join property is a feature of decomposition supported by normalization. It is

the ability to ensure that any instance of the original relation can be identified from

corresponding instances in the smaller relations.

Forexample:

R : relation, F : set of functional dependencies on R,

X, Y : decomposition of R,

A decomposition {R1, R2, …, Rn} of a relation R is called a lossless decomposition for R

if the natural join of R1, R2, …, Rn produces exactly the relation R.

o Therelationissaidtobelosslessdecompositionifnaturaljoinsofallthedecomposition give

the original relation.

Decompositionislosslessif:

X intersection Y -> X, that is: all attributes common to both X and Y functionally

determine ALL the attributes in X.

X intersection Y -> Y, that is: all attributes common to both X and Y functionally

determine ALL the attributes in Y

If X intersection Y forms a superkey of either X or Y, the decomposition of R is a lossless

decomposition.

4. LackofDataRedundancy

 LackofDataRedundancy is alsoknown as aRepetitionof Information.

 Theproperdecompositionshouldnotsufferfrom anydataredundancy.

 Thecarelessdecomposition maycause aproblemwiththedata.

 Thelack ofdata redundancyproperty maybeachievedby Normalization process.

DATABASE SYSTEMS

81

UNIT-V

TRANSACTIONMANAGEMENT

WhatisaTransaction?

A transaction is an event which occurs on the database. Generally a transaction reads a value

from the database or writes a value to the database. If you have any concept of Operating

Systems, then we can say that a transaction is analogous to processes. Although a transaction

can both read and write on the database, there are some fundamental differences between

these two classes of operations. A read operation does not change the image of the databasein

any way. But a write operation, whether performed with the intention of inserting,updating or

deleting data from the database, changes the image of the database. That is, we may say that

these transactions bring the database from an image which existed before the transaction

occurred (called the Before Image or BFIM) to an image which exists after the transaction

occurred (called the After Image or AFIM).

TheFourPropertiesof Transactions

Every transaction, for whatever purpose it is being used, has the following four properties.

Taking the initial letters of these four properties we collectively call them the ACID

Properties. Here we try to describe them and explain them.

Atomicity: This means that either all of the instructions within the transaction will be

reflected in the database, or none of them will be reflected.

Say for example, we have two accounts A and B, each containing Rs 1000/-. We now start a

transaction to deposit Rs 100/- from account A to Account B.

ReadA;

A =A– 100;

WriteA;

Read B;

B =B +100;

WriteB;

DATABASE SYSTEMS

82

Fine, is not it? The transaction has 6 instructions to extract the amount from A and submit it

to B.The AFIM will show Rs 900/- in A and Rs 1100/- in B.

Now, suppose there is a power failure just after instruction 3 (Write A) has been complete.

What happens now? After the system recovers the AFIM will show Rs 900/- in A, but the

same Rs 1000/- in B. It would be said that Rs 100/- evaporated in thin air for the power

failure. Clearly such a situation is not acceptable

The solution is to keep every value calculated by the instruction of the transaction not in any

stable storage (hard disc) but in a volatile storage (RAM), until the transaction completes its

last instruction. When we see that there has not been any error we do something known as a

COMMIT operation. Its job is to write every temporarily calculated value from the volatile

storage on to the stable storage. In this way, even if power fails at instruction 3, the post

recovery image of the database will show accounts A and B both containing Rs 1000/-, as if

the failed transaction had never occurred.

Consistency: If we execute a particular transaction in isolation or together with other

transaction,(i.e. presumably in a multi-programming environment), the transaction will yield

the same expected result.

To give better performance, every database management system supports the execution of

multiple transactions at the same time, using CPU Time Sharing. Concurrently executing

transactions may have to deal with the problem of sharable resources, i.e. resources that

multiple transactions are trying to read/write at the same time. For example, we may have a

table or a record on which tw transaction are trying to read or write at the same time. Careful

mechanisms are created in order to prevent mismanagement of these sharable resources, so

that there should not be any change in the way a transaction performs. A transaction which

deposits Rs 100/- to account A must deposit the same amount whether it is acting alone or in

conjunction with another transaction that may be trying to deposit or withdraw some amount

at the same time.

DATABASE SYSTEMS

83

Isolation: In case multiple transactions are executing concurrently and trying to access a

sharable resource at the same time, the system should create an ordering in their execution so

that they should not create any anomaly in the value stored at the sharable resource.

There are several ways to achieve this and the most popular one is using some kind oflocking

mechanism. Again, if you have the concept of Operating Systems, then you should remember

the semaphores, how it is used by a process to make a resource busy beforestarting to use it,

and how it is used to release the resource after the usage is over. Other processes intending to

access that same resource must wait during this time. Locking isalmost similar.It states that

atransaction must first lockthedataitem that it wishes to access, and release the lock when the

accessing is no longer required. Once a transaction locks the data item, other transactions

wishing to access the same data item must wait until the lock is released.

Durability: It states that once a transaction has been complete the changes it has madeshould

be permanent.

As we have seen in the explanation of the Atomicity property, the transaction, if completes

successfully, is committed. Once the COMMIT is done, the changes which the transactionhas

made to the database are immediately written into permanent storage. So, after the transaction

has been committed successfully, there is no question of any loss of information even if

thepower fails. Committing atransaction guarantees that theAFIM has been reached.

There are several ways Atomicity and Durability can be implemented. One of them is called

Shadow Copy. In this scheme a database pointer is used to point to the BFIM of

thedatabase.Duringthetransaction,allthetemporarychangesarerecordedintoaShadowCopy,

which is an exact copy of the original database plus the changes made by the transaction,

whichistheAFIM.Now,ifthetransactionisrequiredtoCOMMIT,thenthedatabasepointer is

updated to point to the AFIM copy, and the BFIM copy is discarded. On the other hand, if

thetransaction is not committed,thenthe databasepointeris not updated. It keeps pointing to the

BFIM, and the AFIM is discarded. This is a simple scheme, but takes a lot of memory space

and time to implement.

DATABASE SYSTEMS

84

Ifyoustudycarefully,youcanunderstandthatAtomicityandDurabilityisessentiallythe same thing,

just as Consistency and Isolation is essentially the same thing.

TransactionStates

Therearethefollowingsixstates inwhichatransactionmay exist:

 Active:Theinitialstatewhenthetransactionhasjuststartedexecution.

 Partially Committed: At any given point of time if the transaction is executing

properly, then it is going towards it COMMIT POINT. The values generated during

the execution are all stored in volatile storage.

 Failed: If the transaction fails for some reason. The temporary values are no longer

required,andthetransactionissettoROLLBACK.Itmeansthatanychangemadeto the

database by this transaction up to the point of the failure must be undone. If the failed

transaction has withdrawn Rs. 100/- from account A, then the ROLLBACK operation

should add Rs 100/- to account A.

 Aborted: When the ROLLBACK operation is over, the database reaches the BFIM.

The transaction is now said to have been aborted.

 Committed: If no failure occurs then the transaction reaches the COMMIT POINT.

All the temporary values are written to the stable storage and the transaction is said to

have been committed.

 Terminated:Eithercommittedor aborted

Thewholeprocess canbedescribed usingthe following diagram:

DATABASE SYSTEMS

85

ConcurrentExecution

A schedule is a collection of many transactions which is implemented as a unit. Depending

upon how these transactions are arranged in within a schedule, a schedule can be of twotypes:

 Serial:Thetransactionsareexecutedoneafteranother, inanon-preemptive manner.

 Concurrent:Thetransactionsareexecutedinapreemptive,timeshared method.

In Serial schedule, there is no question of sharing a single data item among manytransactions,

because not more than a single transaction is executing at any point of time. However, a serial

schedule is inefficient in the sense that the transactions suffer for having a longer waiting

time and response time, as well as low amount of resource utilization.

In concurrent schedule, CPU time is shared among two or more transactions in order to run

them concurrently. However, this creates the possibility that more than one transaction may

need to access a single data item for read/write purpose and the database could contain

inconsistent value if such accesses are not handled properly. Let us explain with the help ofan

example.

Let us consider there are two transactions T1 and T2, whose instruction sets are given as

following. T1 is the same as we have seen earlier, while T2 is a new transaction.

T1

ReadA;

A =A– 100;

WriteA;

Read B;

B =B +100;

WriteB;

T2

ReadA;

Temp=A*0.1; Read

C;

C=C+Temp; Write

C;

T2isanew transactionwhichdeposits toaccountC 10%oftheamountinaccount A.

DATABASE SYSTEMS

86

If we prepare a serial schedule, then either T1 will completely finish before T2 can begin, or

T2 will completely finish before T1 can begin. However, if we want to create a concurrent

schedule, then some Context Switching need to be made, so that some portion of T1 will be

executed, then some portion of T2 will be executed and so on. For example say we have

prepared the following concurrent schedule.

No problem here. We have made some Context Switching in this Schedule, the first one after

executing the third instruction of T1, and after executing the last statement of T2. T1 first

deducts Rs 100/- from A and writes the new value of Rs 900/- into A. T2 reads the value ofA,

calculates the value of Temp to be Rs 90/- and adds the value to C. The remaining part of T1

is executed and Rs 100/- is added to B.

Serializability

When several concurrent transactions aretrying to access the same data item, the instructions

within these concurrent transactions must be ordered in some way so as there are no problem

in accessing and releasing the shared data item. There are two aspects of serializability which

are described here:

DATABASE SYSTEMS

87

ConflictSerializability

Two instructions oftwo different transactions may want to access the samedata item in order to

perform a read/write operation. Conflict Serializability deals with detecting whether the

instructionsareconflictinginanyway,andspecifyingtheorderinwhichthesetwo instructions will be

executed in case there is any conflict. A conflict arises if at least one (or

both)oftheinstructionsisawriteoperation.ThefollowingrulesareimportantinConflict

Serializability:

1. Iftwoinstructionsofthetwoconcurrenttransactionsarebothforreadoperation,then they

are not in conflict, and can be allowed to take place in any order.

2. If one of the instructions wants to perform a read operation and the other instruction wants

to performawriteoperation, thentheyarein conflict, hencetheirorderingis important. Ifthe read

instruction is performed first, then it reads the old value of the data item and after the reading

is over, the new value of the data item is written. It the write instruction is performed first,

then updates the data item with the new value and the read instruction reads the newly

updated value.

3. If both the transactions are for write operation, then they are in conflict but can be allowed

to take place in any order, because the transaction do not read the value updated by each

other. However, the value that persists in the data item after the schedule is over is the one

written by the instruction that performed the last write.

ViewSerializability:

This is another type of serializability that can be derived by creating another schedule out of

an existing schedule, involving the same set of transactions. These two schedules would be

called View Serializable if the following rules are followed while creating the second

schedule out of the first. Let us consider that the transactions T1 and T2 are being serializedto

create two different schedules S1 and S2 which we want to be View Equivalent and both T1

and T2 wants to access the same data item.

1. If in S1, T1 reads the initial value of the data item, then in S2 also, T1 should read the

initial value of that same data item.

DATABASE SYSTEMS

88

2. IfinS1,T1writesavalueinthedataitemwhichisreadbyT2,theninS2also,T1should write the

value in the data item before T2 reads it.

3. If in S1, T1 performs the final write operation on that data item, then in S2 also, T1 should

perform the final write operation on that data item. Let us consider a schedule S in which

there are two consecutive instructions, I and J , of transactions Ti and Tj , respectively (i _=j).

If I and J refer to different data items, then we can swap I and J without affecting the results

of any instruction

in the schedule. However, if I and J refer to the same data item Q, then the order of the two

steps may matter. Since we are dealing with only read and write instructions, there are four

cases that we need to consider:

I=read(Q),J=read(Q).TheorderofIandJdoesnotmatter,sincethesamevalue of Q is read

by Ti and Tj , regardless of the order.

I = read(Q), J = write(Q). If I comes before J , then Ti does not read the value of Q that is

written by Tj in instruction J . If J comes before I, then Ti reads the value of Q that is written

by Tj. Thus, the order of I and J matters.

I=write(Q),J=read(Q).TheorderofIandJmattersforreasonssimilartothoseofthe previous case.

4. I = write(Q), J = write(Q). Since both instructions are write operations, the order of these

instructionsdoesnotaffecteitherTiorTj.However,thevalueobtainedbythenextread(Q)

instruction of S is affected, since the result of only the latter of the two write instructions is

preserved in thedatabase. Ifthereis no other write(Q) instruction afterIand Jin S, then the

order of I and J directly affects the final value of Q in the database state that results from

schedule S.

DATABASE SYSTEMS

89

We say that I and J conflict if they are operations by different transactions on the same data

item, and at least one of these instructions is a write operation. To illustrate the concept of

conflicting instructions, we consider schedule 3in Figure above. The write(A) instruction of

T1 conflicts with the read(A) instruction of T2. However, the write(A) instruction of T2 does

not conflict with the read(B) instruction of T1, because the two instructions access different

data items.

Transaction Characteristics

Every transaction has three characteristics: access mode, diagnostics size, and isolation level.

The diagnostics size determines the number of error conditions that can be recorded.

If the access mode is READ ONLY, the transaction is not allowed to modify the database.

Thus, INSERT, DELETE, UPDATE, and CREATE commands cannot be executed. If we

have to execute one of these commands, the access mode should be set to READ WRITE. F

transactions with READ ONLY access mode, only shared locks need to be obtained, thereby

increasing concurrency.

The isolation level controls the extent to which a given transaction is exposed to the actions

of other transactions executing concurrently. By choosing one of four possible isolation level

settings, a user can obtain greater concurrency at the cost of increasing the transaction's

exposure to other transactions' uncommitted changes.

IsolationlevelchoicesareREADUNCOMMITTED,READCOMMITTED,REPEATABLE

READ, and SERIALIZABLE. The effect of these levels is summarized in Figure given

below.Inthiscontext,dirtyreadandunrepeatablereadaredefinedasusual.Phantomis

DATABASE SYSTEMS

90

defined to be the possibility that a transaction retrieves a collection of objects (in SQL terms,

a collection of tuples) twice and sees different results, even though it does not modify any of

these tuples itself.

In terms of a lock-based implementation, a SERIALIZABLE transaction obtains locks before

readingorwritingobjects,includinglocksonsetsofobjectsthatitrequirestobeunchanged

,andholdsthemuntiltheend,accordingtoStrict2PL. REPEATABLEREADensuresthatT reads

only the changes made by committed transactions, and that no value read or written by T is

changed by any other transaction until T is complete. However, T could experience the

phantom phenomenon; for example, while T examines all Sailors records with rating=1,

another transaction might add a new such Sailors record, which is missed by T.

A REPEATABLE READ transaction uses the same locking protocol as a SERIALIZABLE

transaction, except that it does not do index locking, that is, it locks only individual objects,

not sets of objects.

READ COMMITTED ensures that T reads only the changes made by committed

transactions, and that no value written by T is changed by any other transaction until T is

complete.However,avaluereadbyTmaywellbemodifiedby anothertransactionwhile Tis still in

progress, and T is, of course, exposed to the phantom problem.

A READ COMMITTED transaction obtains exclusive locks before writing objects and

holds these locks until the end. It also obtains shared locks before reading objects, but these

locks are released immediately; their only effect is to guarantee that the transaction that last

modified the object is complete. (This guarantee relies on the fact that every SQL transaction

obtains exclusive locks before writing objects and holds exclusive locks until the end.)

AREADUNCOMMITTEDtransactiondoesnotobtainsharedlocksbeforereadingobjects. This

mode represents the greatest exposure to uncommitted changes of other transactions; so much

so that SQL prohibits such a transaction from making any changes itself - a READ

UNCOMMITTED transaction is required to have an access mode of READ ONLY. Since

such a transaction obtains no locks for reading objects, and it is not allowed to write objects

(and therefore never requests exclusive locks), it never makes any lock requests

DATABASE SYSTEMS

91

The SERIALIZABLE isolation level is generally the safest and is recommended for most

transactions. Some transactions, however, can run with a lower isolation level, and thesmaller

number of locks requested can contribute to improved system performance.

For example, a statistical query that finds the average sailor age can be run at the READ

COMMITTED level, or even the READ UNCOMMITTED level, because a few incorrect or

missing values will not significantly affect the result if the number of sailors is large. The

isolation level and access mode can be set using the SET TRANSACTION command. For

example, the following command declares the current transaction to be SERIALIZABLE and

READ ONLY:

SETTRANSACTIONISOLATIONLEVELSERIALIZABLEREADONLY

Whenatransactionisstarted,thedefaultisSERIALIZABLEandREAD WRITE.

PRECEDENCEGRAPH.

Aprecedencegraph,alsonamedconflictgraphandserializabilitygraph,isusedinthe context of

concurrency control in databases.

Theprecedencegraph for ascheduleS contains:

A node for each committed transaction in S An arc from Ti to Tj if an action of Ti

precedesand conflicts with one of Tj's actions.

DATABASE SYSTEMS

92

A precedence graph of the schedule D, with 3 transactions. As there is a cycle (of length 2;

with two edges) through the committed transactions T1 and T2, this schedule (history) is not

Conflict serializable.

Thedrawing sequencefortheprecedencegraph:-

 For each transaction Ti participating in schedule S, create a node labelled Ti in the

precedence graph. So the precedence graph contains T1, T2, T3

 Foreach case in S where Tiexecutes a write_item(X) then Tjexecutes a read_item(X),

create an edge (Ti --> Tj) in the precedence graph. This occurs nowhere in the above

example, as there is no read after write.

 ForeachcaseinSwhereTi executesaread_item(X)thenTj executesawrite_item(X), create

an edge (Ti--> Tj) in the precedence graph. This results in directed edge from T1 to T2.

 For each case in S where Tiexecutes a write_item(X) then Tjexecutes a write_item(X),

create an edge (Ti --> Tj) in the precedence graph. This results in directed edges from

T2 to T1, T1 to T3, and T2 to T3.

DATABASE SYSTEMS

93

 The schedule S is conflict serializable if the precedence graph has no cycles. As T1and

T2 constitute a cycle, then we cannot declare S as serializable or not and serializability

has to be checked using other methods.

TESTINGFORCONFLICTSERIALIZABILITY

 1Aschedule isconflictserializable if andonly ifitsprecedencegraphis acyclic.

 2 To test for conflict serializability, we need to construct the precedence graph and to

invoke a cycle-detection algorithm.Cycle-detection algorithms exist which take order

n2 time, where n is the number of vertices in the graph. (Better algorithms take ordern

+ e where e is the number of edges.)

 3 If precedence graph is acyclic, the serializability order can be obtained by a

topologicalsortingofthegraph.Thatis,alinearorderconsistentwiththepartialorder of the

graph.

For example, a serializability order for the schedule (a) would be one of either (b) or

(c)

 A serializability order of the transactions can be obtained by finding a linear order

consistent with the partial order of the precedence graph.

RECOVERABLE SCHEDULES

 Recoverable schedule — if a transaction Tj reads a data item previously written by a

transaction Ti , then the commit operation of Ti must appear before the commit

operation of Tj.

 The following schedule is not recoverable if T9 commits immediately after the

read(A) operation.

DATABASE SYSTEMS

94

 If T8 should abort, T9 would have read (and possibly shown to the user) an

inconsistent database state. Hence, database must ensure that schedules are

recoverable.

CASCADINGROLLBACKS

 Cascading rollback – a single transaction failure leads to a series of transaction

rollbacks. Consider the following schedule where none of the transactions has yet

committed (so the schedule is recoverable) If T10 fails, T11 and T12 must also be

rolled back.

 Canlead totheundoing ofasignificantamount of work

CASCADELESS SCHEDULES

 Cascade less schedules — for each pair of transactions Ti and Tj such that Tj reads a

dataitem previously writtenby Ti, thecommit operation ofTi appearsbeforetheread

operation of Tj.

 Everycascadeless scheduleisalso recoverable

 Itisdesirable torestrict theschedulesto thosethatarecascadeless.

 Exampleof aschedule that isNOT cascadeless

DATABASE SYSTEMS

95

CONCURRENCYSCHEDULE

Adatabasemustprovide amechanismthatwillensurethat allpossibleschedulesare both:

 Conflictserializable.

 Recoverableandpreferablycascadeless

 Apolicyinwhichonlyonetransactioncanexecuteatatimegeneratesserial schedules, but

provides a poor degree of concurrency.

 Concurrency-control schemes tradeoff between theamount of concurrency they allow

and the amount of overhead that they incur

 Testingaschedule forserializabilityafterithasexecutedisalittletoo late!

 Testsforserializabilityhelpusunderstandwhyaconcurrencycontrolprotocolis correct

 Goal–todevelopconcurrency controlprotocolsthatwillassureserializability.

WEEKLEVELSOFCONSISTENCY

 Some applications are willing to live with weak levels of consistency,

allowingschedules that are not serializable

 E.g.,aread-onlytransactionthatwantstogetanapproximatetotalbalanceofall accounts

 E.g.,databasestatistics computedforqueryoptimizationcan be approximate (why?)

 Suchtransactionsneednotbeserializable withrespecttoothertransactions

 Tradeoffaccuracyforperformance

DATABASE SYSTEMS

96

LEVELSOFCONSISTENCYINSQL

 Serializable— default

 Repeatable read — only committed records to be read, repeated reads of same record

must return same value. However, a transaction may not be serializable – it may find

some records inserted by a transaction but not find others.

 Read committed — only committed records can be read, but successive reads of

record may return different (but committed) values.

 Readuncommitted —evenuncommittedrecordsmayberead.

 Lower degrees of consistency useful for gathering approximate information about the

database

 Warning:somedatabase systemsdonotensureserializableschedulesby default

 E.g.,OracleandPostgreSQLbydefaultsupportalevelofconsistencycalledsnapshot

isolation (not part of the SQL standard)

TRANSACTIONDEFINITIONIN SQL

 Data manipulation language must include a construct for specifying the set of actions

that comprise a transaction.

 InSQL,atransactionbeginsimplicitly.

 Atransaction inSQLends by:

 Commitworkcommitscurrenttransactionandbeginsanewone.

 Rollbackworkcausescurrenttransactiontoabort.

 Inalmostalldatabasesystems,bydefault,everySQLstatementalsocommits implicitly if it

executes successfully

 Implicitcommitcanbeturned offbyadatabasedirective

 E.g.inJDBC, connection. setAuto Commit(false);

RECOVERY SYSTEM

FailureClassification:

 Transactionfailure:

 Logicalerrors:transactioncannotcompleteduetosomeinternalerror condition

 Systemerrors:thedatabasesystemmustterminateanactivetransactionduetoan error

condition (e.g., deadlock)

DATABASE SYSTEMS

97

 System crash: a power failure or other hardware or software failure causes the system

to crash.

 Fail-stopassumption:non-volatilestoragecontentsareassumedtonotbecorruptedas result

of a system crash

 Databasesystemshavenumerousintegritycheckstopreventcorruptionof disk data

 Diskfailure:a headcrashor similardisk failuredestroys allorpart ofdisk storage

 Destructionisassumedtobedetectable:diskdrivesusechecksumstodetectfailures

RECOVERY ALGORITHMS

 ConsidertransactionTithattransfers$50fromaccountAtoaccountB

 Two updates: subtract 50 from A and add 50 to B Transaction Ti requires updates toA

and B to be output to the database.

 A failure may occur after one of these modifications have been made but before both

of them are made.

 Modifying the database without ensuring that the transaction will commit may leave

the database in an inconsistent state

 Notmodifyingthedatabasemayresultinlostupdatesiffailureoccursjustafter transaction

commits

 Recoveryalgorithmshavetwoparts

1. Actionstakenduringnormaltransactionprocessingtoensureenoughinformation

exists to recover from failures

2. Actionstakenafterafailuretorecoverthedatabasecontentstoastatethatensures

atomicity, consistency and durability

STORAGE STRUCTURE

 Volatilestorage:

 Doesnotsurvivesystemcrashes

 Examples:mainmemory,cache memory

 Nonvolatilestorage:

 Survivessystemcrashes

 Examples:disk,tape,flashmemory,

 Non-Volatile(batterybackedup)RAM

DATABASE SYSTEMS

98

 Butmay stillfail, losingdata

 Stablestorage:

 amythical formof storagethat survivesall failures

 Approximatedbymaintaining multiplecopiesondistinctnonvolatilemedia

Stable-StorageImplementation

 Maintainmultiplecopies ofeachblock onseparatedisks

 copiescanbeatremotesitestoprotectagainstdisasterssuchasfireor flooding.

 Failureduringdatatransfercan stillresultininconsistent copies.

 Blocktransfercanresultin

 Successfulcompletion

 Partialfailure:destinationblockhasincorrectinformation

 Totalfailure:destination blockwas neverupdated

 Protectingstoragemedia fromfailureduringdatatransfer(one solution):

 Executeoutputoperationasfollows(assumingtwocopiesofeachblock):

1. Writetheinformation ontothefirstphysicalblock.

2. Whenthefirstwritesuccessfullycompletes,writethesameinformationontothe

second physical block.

3. Theoutputis completedonly afterthesecond writesuccessfully completes.

 Copiesofablockmaydifferduetofailureduringoutputoperation.Torecoverfrom

failure:First find inconsistent blocks:

1. Expensivesolution:Comparethetwocopiesof everydiskblock.

2. Better solution:

 Record in-progress disk writes on non-volatile storage (Non-volatile RAM or special

area of disk).

 Usethisinformationduringrecoverytofindblocksthatmaybeinconsistent,and only

compare copies of these.

 UsedinhardwareRAID systems

Ifeithercopy of an inconsistent blockis detected to have an error(bad checksum), overwrite

itbytheothercopy.Ifbothhavenoerror,butaredifferent,overwritethesecondblock bythe first

block.

DATABASE SYSTEMS

99

DATAACCESS

 Physicalblocks arethoseblocksresiding onthedisk.

 Systembufferblocksaretheblocksresidingtemporarilyinmain memory.

 Block movements between disk and main memory are initiated through the following

two operations:

 input(B)transfersthephysical blockBtomain memory.

 output(B)transfersthebufferblockBtothedisk,andreplacestheappropriatephysical block

there.

 Weassume,forsimplicity,thateachdataitemfitsin,andisstoredinside,asingle block.

 Each transaction Ti has its private work-area in which local copies of all data

itemsaccessed and updated by it are kept.

 Ti'slocal copy ofadata item X is denoted by xi.

 BXdenotes blockcontaining X

 Transferring data items between system buffer blocks and its private work-area done

by:

 read(X)assigns thevalue of data itemX to thelocal variablexi.

 write(X) assignsthevalueof localvariable xito dataitem {X}in thebuffer block.

 Transactions

 Must perform read(X) before accessing X for the first time (subsequent reads can be

from local copy)

 Thewrite(X) canbe executedat anytimebeforethetransaction commits

 Notethatoutput(BX)neednotimmediatelyfollowwrite(X).Systemcan performthe output

operation when it seems fit.

Lock-Based Protocols

Alockisamechanismtocontrolconcurrentaccesstoadataitem Data items

can be locked in two modes :

1. exclusive(X)mode.Dataitemcanbebothreadaswellaswritten.X-lockisrequested using lock-X

instruction.

2. shared (S) mode. Data item can only be read. S-lock is requested using lock-S instruction.

Lock requests are made to concurrency-control manager. Transaction can proceed only after

request is granted.

DATABASE SYSTEMS

100

Lock-compatibilitymatrix

1) Atransactionmaybegrantedalockonanitemiftherequestedlockiscompatiblewith locks

already held on the item by other transactions

2) Any number of transactions can hold shared locks on an item, but if any transaction holds

an exclusive on the item no other transaction may hold any lock on the item.

3) If a lock cannot be granted, the requesting transaction is made to wait till all incompatible

locks held by other transactions have been released. The lock is then granted.

Exampleofatransactionperforminglocking:

T2:

lock-S(A);

read (A);

unlock(A);

lock-S(B);

read (B);

unlock(B);

display(A+B)

Lockingasaboveisnotsufficienttoguaranteeserializability —ifAandBgetupdated in-

between the read of A and B, the displayed sum would be wrong.

Alockingprotocolisasetofrulesfollowedbyalltransactionswhilerequestingandreleasing locks.

Locking protocols restrict the set of possible schedules.

Considerthepartialschedule

DATABASE SYSTEMS

101

NeitherT3 norT4canmakeprogress—executing lock-S(B)causesT4 towaitforT3 to release

its lock on B, while executing lock-X(A) causes T3 to wait for T4 to release its lock on

A. Such a situation is called a deadlock.

l.To handleadeadlockoneofT3orT4mustberolledback andits locks released.

2. Thepotentialfordeadlockexistsinmostlockingprotocols.Deadlocks areanecessaryevil.

3. Starvationisalsopossibleifconcurrencycontrolmanagerisbadlydesigned.For

example:

 AtransactionmaybewaitingforanX-lockonanitem,whileasequenceofother transactions

request and are granted an S-lock on the same item.

 Thesametransactionisrepeatedlyrolledbackduetodeadlocks.

4.Concurrency control manager can be designed to prevent starvation.

THETWO-PHASELOCKINGPROTOCOL

1. Thisisaprotocolwhichensuresconflict-serializable schedules.

2. Phase1:Growing Phase

 transactionmayobtainlocks

 transactionmaynotreleaselocks

3. Phase2: Shrinking Phase

 transactionmayrelease locks

 transactionmay notobtain locks

4. The protocol assures serializability. It can be proved that the transactions can be serialized

in the order of their lock points (i.e. the point where a transaction acquired its final lock).

5. Two-phaselocking doesnotensurefreedom from deadlocks

6. Cascading roll-back is possible under two-phase locking. To avoid this, follow a modified

protocol called strict two-phase locking. Here a transaction must hold all its exclusive locks

till it commits/aborts.

7. Rigoroustwo-phaselockingisevenstricter:herealllocksareheldtillcommit/abort. In this

protocol transactions can be serialized in the order in which they commit.

8. Therecanbeconflictserializableschedulesthatcannotbeobtainediftwo-phase

locking is used.

9. However,inthe absenceofextrainformation(e.g., orderingof access todata), twophase

DATABASE SYSTEMS

102

lockingisneeded forconflictserializabilityinthe followingsense: Given a transaction Ti that

does not follow two-phase locking, we can find a transaction Tj that uses two-phase locking,

and a schedule for Ti and Tj that is not conflict serializable.

TIMESTAMP-BASEDPROTOCOLS

1. Eachtransactionisissuedatimestampwhenitentersthesystem. Ifanoldtransaction Tihas time-

stampTS(Ti),anewtransactionTjisassignedtime-stampTS(Tj)suchthatTS(Ti)

<TS(Tj).

2. Theprotocolmanagesconcurrentexecutionsuchthatthetime-stampsdeterminethe

serializability order.

3. Inordertoassuresuchbehavior,theprotocolmaintainsforeachdata Qtwotimestamp values:

 W-timestamp(Q) is the largest time-stamp of any transaction that executed

write(Q)successfully.

 R-timestamp(Q)isthelargesttime-stampofanytransactionthatexecutedread(Q)

successfully.

4. Thetimestamporderingprotocolensuresthat anyconflicting read and writeoperations are

executed in timestamp order.

5. SupposeatransactionTiissues aread(Q)

 IfTS(Ti) W-timestamp(Q),thenTineedstoreadavalueofQthatwasalready

overwritten. n Hence, the read operation is rejected, and Ti is rolled back.

 IfTS(Ti) W-timestamp(Q),thenthereadoperationisexecuted,andRtimestamp(

Q)issettomax(R-timestamp(Q),TS(Ti)).

6. Supposethattransaction Tiissueswrite(Q).

 If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was needed

previously, and the system assumed that that value would never be produced. nHence,

the write operation is rejected, and Ti is rolled back.

 If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of Q. n

Hence, this write operation is rejected, and Ti is rolled back.

 Otherwise,thewriteoperationisexecuted,andW-timestamp(Q)is setto TS(Ti).

1. Wenowpresentamodificationtothetimestamp-orderingprotocolthatallowsgreater

potentialconcurrencythandoestheprotocoli.e.,TimestamporderingProtocol.Letus

DATABASE SYSTEMS

103

consider schedule 4 of Figure below, and apply the timestamp-ordering protocol. Since T27

starts before T28, we shall assume that TS(T27) <TS(T28). The read(Q) operation of T2

succeeds, as does the write(Q) operation of T28. When T27 attempts its write(Q) operation,

we find that TS(T27) <W-timestamp(Q), since Wtimestamp(Q) = TS(T28). Thus, the

write(Q) by T27 is rejected and transaction T27 must be rolled back.

2. Although the rollback of T27 is required by the timestamp-ordering protocol, it is

unnecessary. Since T28 has already written Q, the value that T27 is attempting to write is one

that will never need to be read. Any transaction Ti with TS(Ti) <TS(T28) that attempts a

read(Q)will be rolled back, since TS(Ti)<W-timestamp(Q).

3. Any transaction Tj with TS(Tj) >TS(T28) must read the value of Q written by T28, rather

thanthevaluethatT27is attemptingtowrite. Thisobservationleadsto amodifiedversion,of the

timestamp-ordering protocol in which obsolete write operations can be ignored under

certaincircumstances.Theprotocolrulesforread operationsremainunchanged. Theprotocol rules

for write operations, however, are slightly different from the time stamp order in protocol.

Themodificationtothetimestamp-orderingprotocol,calledThomas’writerule,isthis:

Suppose that transaction Ti issues write(Q).

1. If TS(Ti) <R-timestamp(Q), then the value of Q that Ti is producing was previously

needed, and it had been assumed that the value would never be produced. Hence, the system

rejects the write operation and rolls Ti back.

2. IfTS(Ti)<W-timestamp(Q),thenTiisattemptingtowriteanobsoletevalueofQ.Hence, this write

operation can be ignored.

3. Otherwise,thesystemexecutesthe writeoperationandsetsW-timestamp(Q)toTS(Ti).

VALIDATION-BASEDPROTOCOLS

1) PhasesinValidation-BasedProtocolsofthevariousdataitemsandstorestheminvariables local to

Ti. It performs all write operations on temporary local variables, without updates of the actual

database.

DATABASE SYSTEMS

104

2) Validation phase. The validation test is applied to transaction Ti. This determines whether

Ti is allowed to proceed to the write phase without causing a violation of serializability. If a

transaction fails the validation test, the system aborts the transaction.

3) Writephase.IfthevalidationtestsucceedsfortransactionTi,thetemporarylocal variables that

hold the results of any write operations performed by Ti are copied to the database.Read-only

transactions omit this phase.

MODESINVALIDATION-BASEDPROTOCOLS

1. Start(Ti)

2. Validation(Ti)

3. Finish

MULTIPLEGRANULARITY.

multiple granularity locking (MGL) is a locking method used in database management

systems(DBMS)andrelationaldatabases. InMGL,locksaresetonobjectsthatcontainother

objects.MGLexploitsthehierarchicalnatureofthecontainsrelationship.Forexample,a

databasemayhavefiles,whichcontainpages,whichfurthercontainrecords.Thiscanbe

thoughtofasatreeofobjects,whereeachnodecontainsitschildren.Alockonsuchasa shared or

exclusive lock locks the targeted node as well

as all of its descendants. Multiple granularity locking is usually used with non-strict two-

phase locking to guarantee serializability. The multiple-granularity locking protocol uses

theselockmodestoensureserializability.Itrequiresthatatransaction Tithatattemptstolock a node

Q must follow these rules:

 TransactionTimustobservethe lock-compatibilityfunctionofFigureabove.

 TransactionTi mustlock theroot ofthe treefirst,and canlock itin anymode.

 TransactionTi canlocka nodeQinSor ISmode only ifTicurrently hastheparent of

Qlocked in eitherIXorIS mode.

 Transaction Ti can lock a node Q in X, SIX, or IX mode only if Ti currently has

theparent of Q locked in either IX or SIX mode.

 Transaction Ti can lock a node only if Ti has not previously unlocked any node (that

is, Ti is two phase).

 TransactionTicanunlock anodeQonlyifTi currentlyhasnoneofthechildren of

Qlocked.

	PREPARED BY
	MALLAREDDYCOLLEGEOFENGINEERINGANDTECHNOLOGY
	3/-/-/3
	COURSE OBJECTIVES:
	UNITI:
	UNITII:
	UNITIII:
	UNITIV:
	UNITV:
	TEXTBOOKS:
	REFERENCE BOOKS:
	COURSEOUTCOMES:
	Data:

	UNIT I INTRODUCTION DATABASE
	Example:
	Database:
	Example: (1)
	DatabaseSystem:
	Advantages:
	WhatisManagement System?
	Databases touch all aspects of our lives. Some of the major areas of application are asfollows:
	PurposeofDatabaseSystems
	Advantagesof DBMS:
	DisadvantagesofDBMS
	Peoplewhodealwithdatabases
	1. DatabaseAdministrators(DBA):
	2. DatabaseDesigners:
	3. End Users:
	4. SystemAnalyst:
	5. ApplicationProgrammers(Software Engineers):

	UNIT II DATABASEDESIGN
	Semi-structuredDataModel.
	DatabaseLanguages
	Data-ManipulationLanguage
	Data-DefinitionLanguage(DDL)
	Data Dictionary
	DatabaseAdministratorsandDatabaseUsers
	DatabaseUsersandUser Interfaces
	DatabaseArchitecture:
	Figure:DatabaseSystem Architecture
	Figure:Two-tierandthree-tier architectures.
	StorageManager:
	Transaction Manager:
	ConceptualDatabaseDesign-EntityRelationship(ER)Modeling: Database Design Techniques
	What is ER Modeling?
	Entity
	Entityinstance
	Regular Entity
	Weakentity
	Attributes
	 DomainofAttributes
	 Key attribute
	 Simple attribute
	 Compositeattribute
	 Single valued Attributes
	 Multi-valued Attributes
	 StoredAttribute
	 DerivedAttribute
	Relationships
	DegreeofaRelationship
	ExampleforCardinality –One-to-One(1:1)
	ExampleforCardinality –One-to-Many(1:N)
	ExampleforCardinality –Many-to-One(M:1)
	Cardinality–Many-to-Many (M:N)
	RelationshipParticipation
	2. Partial
	AdvantagesandDisadvantagesofERModeling(MeritsandDemeritsofERModeling) Advantages
	Disadvantages
	Relational Model
	StructureofRelational Databases:
	DatabaseSchema
	Keys
	Asuperkey:
	candidate keys:
	SchemaDiagrams
	Figure2.5:Schemadiagram fortheuniversitydatabase.

	UNIT III STRUCTUREDQUERYLANGUAGE
	What is SQL?
	WhytoUseSQL?
	HistoryofSQL
	Typesof SQL
	Whatis DDL?
	(ii) CreatingTable Syntax:
	2. ALTER Command
	Syntax:
	Example
	Syntax: (1)
	Syntax: (2)
	ExamplesofDCL commands:
	Grant:
	Syntax: (3)
	Syntax: (4)
	TCLCommandsinSQL-Transaction ControlLanguage Examples
	TCL Commands
	COMMIT;
	2. Rollback
	Syntax:
	UPDATESTUDENTSETSTUDENT_NAME=‘Manish’WHERESTUDENT_NAME
	3. Savepoint
	savepointsavepoint-name;
	UsesomeSQL queriesontheabovetableandthen watch theresults
	SQLSet Operations

	UNION
	Syntaxof UNION:
	sales2006

	INTERSECT
	Syntaxof INTERSECT
	Employee_details1:

	EXCEPT
	Joins
	SQLJOINS:EQUIJOIN and NONEQUI JOIN

	1) SQL EQUI JOIN:
	2) SQLNON EQUIJOIN :
	1. SQLINNER JOIN
	2. SQLOUTER JOIN
	Syntax:
	PictorialPresentationofSQLJoins:

	EQUI JOIN :
	Syntax :
	Example–
	Syntax:
	Example– (1)
	NestedQueriesinSQL:
	CorrelatedSubqueries
	NoncorrelatedSubqueries
	Aggregatefunctions:
	VariousAggregate Functions:
	Count():
	Sum():
	Avg():
	Min():
	AggregateFunctionsandNULLValues

	INTRODUCTIONTO VIEWS
	CREATINGVIEWS
	Syntax:
	Output:

	DELETING VIEWS
	Syntax:

	UPDATING VIEWS
	Syntax:
	Output:
	Example:
	Output: (1)
	Example: (1)
	Output: (2)
	Syntax: (1)
	Explanationofsyntax:
	BEFOREandAFTERofTrigger:
	ExamplesofTriggersinSQL

	UNIT IV DEPENDENCIESANDNORMALFORMS
	Whatis aDatabaseSchema?
	IntroductionofDatabaseNormalization
	Objectiveof Normalization
	FunctionalDependency
	For example:
	TrivialFunctionalDependency
	NonTrivialFunctionalDependencies
	Example:
	SemiNonTrivialFunctionalDependencies
	Examples:
	1. Axiomofreflexivity–
	Example: (1)
	2. Axiomofaugmentation–
	Example: (2)
	3. Axiomoftransitivity–
	SecondaryRules–
	1. Union–
	2. Decomposition–
	3. PseudoTransitivity–
	MinimalCovers:
	NORMAL FORMS
	FirstNormalForm (1NF):
	SecondNormalForm (2NF):
	ThirdNormal Form(3NF):
	Boyce-CoddNormalForm(BCNF):

	DECOMPOSITIONS
	1. AttributePreservation:
	2. DependencyPreservation:
	3. LosslessJoin:
	Decompositionislosslessif:
	4. LackofDataRedundancy

	TRANSACTIONMANAGEMENT
	WhatisaTransaction?
	TheFourPropertiesof Transactions
	TransactionStates
	ConcurrentExecution
	Serializability
	ConflictSerializability
	ViewSerializability:
	Transaction Characteristics
	SETTRANSACTIONISOLATIONLEVELSERIALIZABLEREADONLY
	TESTINGFORCONFLICTSERIALIZABILITY
	RECOVERABLE SCHEDULES
	CASCADINGROLLBACKS
	CASCADELESS SCHEDULES
	CONCURRENCYSCHEDULE
	WEEKLEVELSOFCONSISTENCY
	LEVELSOFCONSISTENCYINSQL
	TRANSACTIONDEFINITIONIN SQL
	RECOVERY SYSTEM
	FailureClassification:

	RECOVERY ALGORITHMS
	STORAGE STRUCTURE
	Stable-StorageImplementation

	DATAACCESS
	Lock-Based Protocols

	THETWO-PHASELOCKINGPROTOCOL
	TIMESTAMP-BASEDPROTOCOLS
	VALIDATION-BASEDPROTOCOLS
	MODESINVALIDATION-BASEDPROTOCOLS
	MULTIPLEGRANULARITY.

